

Original

Schiller, H.:
Neuronal Network for Simulation of an Inverse Model.
In: 3rd Bio-Optical Algorithm and Protocols Workshop. Greenbelt
(USA), 12.05.1994 - 13.05.1994, 1994.

Neuronal Network for Simulation of an

Inverse Model

H. Schiller

May '94

Inverse modeling of the in
uence of CASE II water properties on the radiances measured by

CZCS is known to give good results. As inverse modeling is quite a heavy computational load

we are interested in methods which make feasible the inverse modeling operationally.

1. Inverting the Model

Suppose there is a model F which, using some parameters ~p, derives from concentrations

of Gelbsto� etc, ~c the radiances ~r seen by a satellite in di�erent channels:

~r = F

~p

(~c)

Then what one needs is the inverse model

~c = F

~p

�1

(~r

meas:

)

A common procedure to realize the inverse model from the direct one is the least square

method. That means one iterates the c's until

�

2

(~c) =

X

rad:

(

r

meas:

i

� r

i

(F(~c))

�r

meas:

i

)

2

!

=Minimum

If the minimization is successful then the model is inverted for the given r{values:

�

2

(~c) � 0 ! �

2

Min:

(~c) � F

�1

(~r)

As stated above the utilization of the inverse model is quite a heavy computational task.

Therefore we look for possibilities to improve the performance:

� In Applied Optics, Vol 32, No. 18, pp 3280{3285 we demonstrated the usage of a

Chebyshev{Expansion of

F

�1

(~r)

. This method becomes clumsy if one wants to take into account additional parameters.

� The calculation of the inverse model can be looked at as an interpolation task. Suppose

we use the Model F

~p

(~c) to generate a huge table like

1

randomly

chosen

in appr.

intervals

Model! ~r

z }| { z }| {

c

1

; c

2

; : : : p

1

; p

2

; : : : r

1

; r

2

; : : :

c

1

; c

2

; : : : p

1

; p

2

; : : : r

1

; r

2

; : : :

: :

: :

�

�

c

1

; c

2

; : : : p

1

; p

2

; : : : r

1

; r

2

; : : :

| {z } | {z }

Interpolation

"

~c ~r; ~p

Given parameters ~p and measured ~r in principle we could use such a table to get

the desired ~c by interpolation. Technically this will not be feasible: due to the high

dimension (5 parameters, 4channels from CZCS { even worse with SeaWiFS) the table

would be simply to large. So we try to use arti�cial neuronal nets for the interpolation

task.

2. Neuronal Network (feed forward)

There are many types of arti�cial neuronal networks. For our interpolation task we have

chosen a feed forward (error backpropagation) network (�NN for short). In the following

the essentials of this type of network is summarized.

�NN are organized by layers. There is an input layer, an output layer and one or more

hidden layer(s) between them. Each layer consists of neurons: the input layer has as many

neurons as there are input values, the output layer has as many neurons as there are output

values necessary and the hidden layer(s) need a problem{dependent number of neurons.

Between two neighbouring layers are directed links: each neuron in one layer has a link to

each neuron of the next (neighbouring) layer. Each link has a weight (w).

Each neuron calculates its output value according to

o(�bias+

X

incominglinks

w

i

x

i

)

where

bias is a value speci�c for each neuron

w

i

is the weight of the link

x

i

is the output{value of the link in the preceding

1

layer

o is a nonlinear function. We used the (commonly used) logistic function o(s) =

1

1+exp(s)

.

The �NN works sequentially: at �rst the input{values are applied to the input{neurons

and their outputs are calculated. Then all neurons of the �rst hidden layer calculate their

1

The neurons in the input{layer have only one incoming link and x

1

then is the input value

2

outputs and so on until the output{layer is reached | giving the network{results for the

applied input.

For a �NN to be useful one has to `teach' it. For this one generates two su�ciently large

sets of corresponding input{output{vectors | one set is used as `training'{sample and the

other set as test{sample. During `teaching' the values of the biases of all neurons as well

as the weights w of all the links are changed so as to minimize

2

an error{function

X

`trainings�sample

0

X

output�layer

(o

desired

� o

ffNN

)

2

After this minimization{procedure the second (`test') set is used to check if the resulting net

has `generalization'{power, i.e. to produce reasonable results also for input{values which

were not `shown' to it before.

3. Results

We used a �NN with nine input{neurons: four radiances from CZCS and �ve parameters

1. ch. 1

2. ch. 2

3. ch. 3

4. ch. 4

5. Angstrom{coe�.

6. ozon{concentr.

7. �

sun

8. �

view

9. Azimuth|di�erence

and four output values:

1. log(aerosol)

2. log(chlorophyll)

3. log(suspended matter)

4. log(yellow substance)

The training{ and test{sample contained 15K points each. Two �NN's were `trained': the

�rst with two hidden layers each with 80 neurons, the second with three hidden layers with

100, 50 and 10 neurons respectively.

mean residuum

net training test

80�80 0.0021 0.0031

100�50�10 0.0018 0.0042

2

In the `training{phase the errors are propagated against the normal processing direction: they are backprop-

agated from the output{layer to the input{layer

3

The `generalization'{power of the 80 � 80{net was better, so the following results are for

this net. The �gures show o

desired

vs. o

ffNN

from the test{sample. A reasonable agreement

was reached.

The net resulted in a data compression of

13�15000

6600

� 30.

From the �NN a C{function was generated which processed �100 pixels/sec at a Sparc{

station iPX (speed up of �10.

4. Outlook

� To use �

2

for model inversion one needs to make simpli�cations in order to do the

inversion within a reasonable time. Such simpli�cations are not necessary with �NN's.

� Operationally one could | after utilization of the �NN | use the (direct) model F

to check the result

3

.

3

Bad results could be used to `reteach' the �NN from time to time.

4

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

N
N

o
u
t
p
u
t
:

a
e
r
o
s
o
l

model input: aerosol

"z1ktest.gnudat"

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

N
N

o
u
t
p
u
t
:

c
h
l
o
r
p
h
y
l
l

model input: chlorphyll

"z1ktest.gnudat"

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

N
N

o
u
t
p
u
t
:

s
u
s
p
e
n
d
e
d

model input: suspended

"z1ktest.gnudat"

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
N

o
u
t
p
u
t
:

y
e
l
l
o
w

model input: yellow

"z1ktest.gnudat"

