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Inverse modeling of the in
uence of CASE II water properties on the radiances measured by

CZCS is known to give good results. As inverse modeling is quite a heavy computational load

we are interested in methods which make feasible the inverse modeling operationally.

1. Inverting the Model

Suppose there is a model F which, using some parameters ~p, derives from concentrations

of Gelbsto� etc, ~c the radiances ~r seen by a satellite in di�erent channels:

~r = F
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(~c)

Then what one needs is the inverse model
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A common procedure to realize the inverse model from the direct one is the least square

method. That means one iterates the c's until
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If the minimization is successful then the model is inverted for the given r{values:
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2

Min:

(~c) � F
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As stated above the utilization of the inverse model is quite a heavy computational task.

Therefore we look for possibilities to improve the performance:

� In Applied Optics, Vol 32, No. 18, pp 3280{3285 we demonstrated the usage of a

Chebyshev{Expansion of

F

�1

(~r)

. This method becomes clumsy if one wants to take into account additional parameters.

� The calculation of the inverse model can be looked at as an interpolation task. Suppose

we use the Model F

~p

(~c) to generate a huge table like

1



randomly

chosen

in appr.

intervals

Model! ~r

z }| { z }| {

c

1

; c

2

; : : : p

1

; p

2

; : : : r

1

; r

2

; : : :

c

1

; c

2

; : : : p

1

; p

2

; : : : r

1

; r

2

; : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

�

�

c

1

; c

2

; : : : p

1

; p

2

; : : : r

1

; r

2

; : : :

| {z } | {z }

Interpolation

# "

~c ~r; ~p

Given parameters ~p and measured ~r in principle we could use such a table to get

the desired ~c by interpolation. Technically this will not be feasible: due to the high

dimension (5 parameters, 4channels from CZCS { even worse with SeaWiFS) the table

would be simply to large. So we try to use arti�cial neuronal nets for the interpolation

task.

2. Neuronal Network (feed forward)

There are many types of arti�cial neuronal networks. For our interpolation task we have

chosen a feed forward (error backpropagation) network (�NN for short). In the following

the essentials of this type of network is summarized.

�NN are organized by layers. There is an input layer, an output layer and one or more

hidden layer(s) between them. Each layer consists of neurons: the input layer has as many

neurons as there are input values, the output layer has as many neurons as there are output

values necessary and the hidden layer(s) need a problem{dependent number of neurons.

Between two neighbouring layers are directed links: each neuron in one layer has a link to

each neuron of the next (neighbouring) layer. Each link has a weight (w).

Each neuron calculates its output value according to

o(�bias+

X

incominglinks

w

i

x

i

)

where

bias is a value speci�c for each neuron

w

i

is the weight of the link

x

i

is the output{value of the link in the preceding

1

layer

o is a nonlinear function. We used the (commonly used) logistic function o(s) =

1

1+exp(s)

.

The �NN works sequentially: at �rst the input{values are applied to the input{neurons

and their outputs are calculated. Then all neurons of the �rst hidden layer calculate their

1

The neurons in the input{layer have only one incoming link and x

1

then is the input value
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outputs and so on until the output{layer is reached | giving the network{results for the

applied input.

For a �NN to be useful one has to `teach' it. For this one generates two su�ciently large

sets of corresponding input{output{vectors | one set is used as `training'{sample and the

other set as test{sample. During `teaching' the values of the biases of all neurons as well

as the weights w of all the links are changed so as to minimize

2

an error{function

X

`trainings�sample

0

X

output�layer

(o
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� o

ffNN

)

2

After this minimization{procedure the second (`test') set is used to check if the resulting net

has `generalization'{power, i.e. to produce reasonable results also for input{values which

were not `shown' to it before.

3. Results

We used a �NN with nine input{neurons: four radiances from CZCS and �ve parameters

1. ch. 1

2. ch. 2

3. ch. 3

4. ch. 4

5. Angstrom{coe�.

6. ozon{concentr.

7. �

sun

8. �

view

9. Azimuth|di�erence

and four output values:

1. log(aerosol)

2. log(chlorophyll)

3. log(suspended matter)

4. log(yellow substance)

The training{ and test{sample contained 15K points each. Two �NN's were `trained': the

�rst with two hidden layers each with 80 neurons, the second with three hidden layers with

100, 50 and 10 neurons respectively.

mean residuum

net training test

80�80 0.0021 0.0031

100�50�10 0.0018 0.0042

2

In the `training{phase the errors are propagated against the normal processing direction: they are backprop-

agated from the output{layer to the input{layer
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The `generalization'{power of the 80 � 80{net was better, so the following results are for

this net. The �gures show o

desired

vs. o

ffNN

from the test{sample. A reasonable agreement

was reached.

The net resulted in a data compression of

13�15000

6600

� 30.

From the �NN a C{function was generated which processed �100 pixels/sec at a Sparc{

station iPX (speed up of �10.

4. Outlook

� To use �

2

for model inversion one needs to make simpli�cations in order to do the

inversion within a reasonable time. Such simpli�cations are not necessary with �NN's.

� Operationally one could | after utilization of the �NN | use the (direct) model F

to check the result

3

.

3

Bad results could be used to `reteach' the �NN from time to time.
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