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ABSTRACT
Process - property relationship control during magnesium sheet manufacturing is demanding due to
the complexity of involved physical parameters and the sensitivity of the system to small changes.
Here, data science might help to extract crucial information on interdependencies between process-
ing parameters and sheet quality. In this paper we suggest a dedicated machine learning framework,
which enables the possibility of correlating material property determining concepts such as pole figure
to processing parameters, namely temperature and deformation degree without knowledge on prior
dependencies of physical variables. Despite the impacts that using a relatively small data set can
have, for Mg-AZ31 alloy we show that some projections of crystallographic texture can be reliably
predicted from mechanical measurement data set. In general, the framework is useful for those pro-
cessing parameters, which conventionally can be represented by a mathematical basis in the context of
interpolation. In the future with access to more data it is proposed that applying our approach might
allow predicting and controlling in-situ the rolling process route.

1. Introduction
Currently, magnesium based materials are used for light-

weight components in vehicles, for biomedical applications
or are handled as candidate to become anode material for
post-Li energy storage devices. Most common in the auto-
motive sector is the processing as die castings. Die casting
allows the fabrication of components with a complex geom-
etry. Nevertheless, the mechanical properties of the die cast
components often do not meet essential requirements with
regard to endurance, strength, ductility, etc. A promising al-
ternative for thin, large area parts, such as automotive body
components, are components made from magnesium sheets.
Relevant deep drawn parts are characterized by high qual-
ity surfaces without pores and superior mechanical proper-
ties in comparison to die cast components. However, this
requires production of high-performance dies, as shown by
a promising approach by e. g. CURBACH et al. [12]. To
bring magnesium sheet components or even Mg-foils for fu-
ture energy applications to the market, it will be necessary
to fabricate material with competitive properties in an eco-
nomic production process. A favored processing route for
the production of magnesium sheets is a two step process.
The first step is the production of thin strips by twin-roll cast-
ing (TRC) [3]. In the second step these strips will be rolled
to final gauge in a conventional rolling process. Twin-roll
casting of thin strips combines solidification and rolling into
one single production step. Thus, it saves a high number of
rolling and annealing passes in comparison to the conven-
tional rolling process from the slab [20, 18, 11, 22, 1]. The
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impact of process parameters of twin roll cast strip prop-
erties is described elsewhere [14]. The strips produced by
twin-roll casting are used as feedstockmaterial in subsequent
rolling process. The conventional rolling process represents
the established production method for the manufacturing of
sheets. The used feedstock material is passed through a pair
of rolls, whereby the roll gap remains smaller than the thick-
ness of the feedstock, such that plastic deformation occurs.
The sheet properties, e. g. the mechanical properties, can
be related to the applied rolling process parameters, a se-
quence of individual hot rolling passes followed by a heating
phase [5]. The rolling temperature is an essential process pa-
rameter, which e. g. activates important deformation and re-
crystallization mechanisms in Mg alloys. A coarser grained
microstructure is obtained at higher rolling temperatures as
a result of dynamic recrystallization and grain growth [17].
Furthermore, the texture weakness i. e. the significance of
alignment of the basal planes in the sheet plane decreases
with increasing rolling temperature [6, 17, 10]. The degree
of deformation (i. e. the amount of plastic strain in the thick-
ness direction) per rolling pass also influences themicrostruc-
ture and texture, as it determines the strain rate and the extent
of deformation before recrystallization of the deformed mi-
crostructure during intermediate annealing [9].

In sheet rolling procedures, experiments are rather com-
plex and time consuming. Therefore the amount of data for a
single alloy is always quite limited. This paper reports on re-
sults of rolling experiments on twin-roll cast strips ofmagne-
sium alloy AZ31 (Mg-3Al-1Zn-Mn) with the rolling param-
eters degree of deformation � and temperature T . Herein,
the degree of deformation � is equal to the plastic strain in
the thickness-direction of the metal sheet. Aspects of non-
uniform deformation are neglected.

It will be shown that despite the complex interdependen-
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cies of involved physical parameters, the proposed machine
learning framework enables process control within a manu-
facturing data space. In the future the data space might be
applied to control actors within an intelligent sheet manufac-
turing route.

Figure 1: Varied process parameters, rolling temperature T
and degree of deformation �

2. Experimental testing and (training) data
generation

2.1. Rolling of magnesium sheets
For the rolling trials, twin-roll cast feedstock material

of the commercial magnesium alloy AZ31 produced in one
batch was used. All strips had a width of 350 mm, an ini-
tial thickness of approx. 5.6 mm and are twin-roll cast at a
temperature T of 650 ◦C with a casting speed of 1.8 m/min,
[15]. For rolling the AZ31 strip was used in the as-twin-roll
cast condition and rolled at three different rolling temper-
atures, 350 ◦C, 400 ◦C, and 450 ◦C, as well as three dif-
ferent degrees of deformation per pass, � = 0.1, � = 0.2,
and � = 0.3, to a final gauge of 2 to 2.1 mm [15]. Prior
to the rolling procedure the strips were heated for 30 min to
the respective rolling temperature. Between the following
rolling passes, the rolled samples were again reheated to the
rolling temperature for 15 min. After the final rolling pass
the sheets were air cooled. The rolling speed was 10 m/min
and a water-soluble oil based lubricant was used. Not con-
sidering the influence of variation of other TRC parameters
is justified by the optimization history of the parameter space
at the facilities.
2.2. Micrographs and texture measurements

After rolling, the microstructures of the materials were
analyzed using optical microscopy. Standardmetallographic
sample preparation techniqueswere employed and an etchant
based on picric acidwas used to reveal grains and grain bound-
aries, [13]. Texture measurements in the sheets were per-
formed on the sheet mid-planes using a Panalytical X-ray
diffractometer setup and CuK� radiation. Six pole figures
were measured up to a tilt of 70◦ which allows recalculation

of full pole figures using the open source software routine
MTEX, see e. g. [2]. The (0001) pole figure is used in this
work to present the texture of the sheets at the midplane.
This simplification of texture presentation appears worth-
while, as the angular distribution of basal planes has been
shown to have the most significant impact on the mechani-
cal behaviour due to easy activation of basal slip.
2.3. Mechanical testing

In order to see how the different process parameters do
influence themechanical properties of the sheets, stress-strain
curves were measured by tensile tests according to DIN EN
10002. Testing was performed on samples extracted from
the sheet in rolling direction, 45◦ to rolling direction and in
the transverse direction. For statistical verification, 4 ten-
sile tests were performed per test parameter. Curves were
analyzed according to mechanical standards for tensile yield
strength (TYS), ultimate tensile strength (UTS) and elonga-
tion at fracture (A).

3. Data and data analysis
3.1. Experimental data

Figure 2 displays the microstructures from longitudinal
sections of the as-rolled sheets of alloyAZ31. Themicrostruc-
tures of all sheets are not fully recrystallized. With increas-
ing rolling temperature the amount and size of the not recrys-
tallized grains decreases, see e. g. [15]. The sheets rolled at
450 ◦C with the degree of deformation of � = 0.1 are nearly
fully recrystallized, [15]. With increasing degree of defor-
mation the amount and size of the deformed grains are in-
creasing again. In the sheets rolled at 350 ◦C and a degree
of deformation of � = 0.3 shear bands are observed [15].
Consequently, two process control variables are chosen to
be implemented as part of the manufacturing data space:

• Data for the data space: T , �
For the texture development it is known that it remains

rather uniform in comparison to other alloy series. The basal
planes are basically aligned to the sheet surface with a tilt
towards rolling direction (RD) or transversal direction (TD)
with different significance. A special resulting aspect is the
development of a split peak component with tilt to RD. The
(0001) pole figures (basis plane defined via x and y coordi-
nates) of nearly all the sheets show detectable pronounced
split peaks towards the rolling direction and an angular dis-
tribution to the transverse direction, cf. [15]. This texture can
be associated to the high amount of unrecrystallized grains
in the rolled material [21]. Because of this effect the (0001)
pole figure of the sheet rolled at 450 ◦C and a degree of de-
formation of � = 0.1 show a single peak, see [15]. The
tendency to develop such a texture increases with increas-
ing rolling temperature and decreasing degree of deforma-
tion per pass and is consistent with further recrystallized
microstructures, see e. g. [15]. For the manufacturing data
space we reduce the amount of data describing the intensity
I0001(x, y) of the pole figure by only using the two (or via
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Figure 2: Cross-section micrograph and respective pole figures of (0001), taken from [15]. Usage of data in Section 3 is indicated

convolution – single) maxima values p1, p2 and by assuming
single peak GAUSSian like profiles. Although we are aware
that an approximation of this texture with the usedGAUSSian
fit curves is far away from an appropriate texture description,
the main aspect of the textures which is also relevant for the
activation of the underlying deformation mechanism is well
featured. Any alloy which does not reveal a comparable tex-
ture will not be described in this way but this first approach
with simple parametrization can be used for the description
of AZ31. As there is no physical meaning of the position
of the higher peak maximum (depends on the sample place-
ment direction within XRD machine) it is allowed to define
an additional constraint to lower the final error:

• Data for the data space: I0001−1,2maximum or in short
form p1, p2 with p1 ≥ p2 by definition
(Remark: This approximation in general is not a valid
texture description, however mathematically applica-
ble for our use case.)

Figure 3 displays the stress-strain curves of the speci-

Figure 3: Stress strain curves in rolling direction (RD), taken
from [15]

men taken in the rolling direction, representative for all ten-
sile tests. The stress-strain curves in Figure 3 respectively
the data in Table 1 show in tendency that the elongation at
fracture increases with increasing temperature, whereas the
yield strength and ultimate tensile strength decrease. This
tendency also corresponds to the stress-strain curves taken
in transverse direction and 45◦ to the rolling direction, see
e. g. [15]. This inverse behaviour can be observed at increas-
ing degree of deformation. This material behavior is under-
stood by a higher work hardening of the material at higher
deformation degrees. At higher rolling temperatures recrys-
tallization effects weaken the material hardening and lead to
increased formability of the sheet material, i. e. the fracture
strain in the context of this work, [15]. Therefore the entire
mechanical property design space can be described by only
three numbers per three cases determined by standard tensile
testing according to DIN EN 10002.

• Data for the data space: TYS, UTS, and A in three di-
rections (longitudinal, transverse, 45◦) to rolling (given
in Table 1)

In a data space of dimension 10 (T , �, I0001−1,2, TYS,UTS, A, three directions) with 9 original (and 41 regener-
ated) data points (40 for training and 1 for testing), the best
possible process-structure property correlation with mini-
mum error is targeted.
3.2. Feedforward Neural Network

In this study, we use the basic type of neural networks,
namely, multi layer perceptron ormultilayer feedforward net-
work. These networks are known as a practical vehicle for
performing a nonlinear input–output mapping of a general
nature, [8]. Here, a mapping between processing param-
eters and mathematically representable property is sought.
Mathematically representable means mechanical properties,
in this case pole figure can be represented with a mathemat-
ical basis similar to well-known interpolation problems in
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mathematics. For a neuron i, let {a1,… , am} be outputs ofneurons 1,… , m in the previous layer, which are connected
to neuron iwith weights {w1i,… , wmi}. The adder for sum-
ming the input signals to neuron i is defined as

Σi =
m
∑

j=1
wjiaj + bi , (1)

where bi ∈ R is a bias. The bias is only added to the nodes
in hidden layer. Its value is determined by the training pro-
cedure. Inclusion of a bias in our case, helps to contain shifts
of the mapping we are replicating by the network. Addition-
ally, because the network is fully connected, adding free pa-
rameter requires to add a neuron, which will contribute more
than one weight to free parameters. Therefore adding a bias
is a good way to add a single free parameter. The output of
neuron i is computed by f (Σi). The activation function f (⋅), considered to be a hyperbolic tangent sigmoid function of
the form

f (Σi) =
2

1 + exp (−2Σi)
− 1 . (2)

The mapping we want to replicate with the network is in-
finitely continuously differentiable in nature. Since the pole
figure is tied to processing parameters based on [15]. How-
ever, in higher temperatures and with lower extend higher
deformation degrees the change in texture development be-
comes less sensible. This choice of function serves this re-
quirements. Note that in the both input and output layer, the
neurons have identical activation functions. Assigning the
input units, the output of the network can be calculated as
a vector-valued function ofN unknowns consist of connec-
tion weights and biases F (u1,… , uN ; x⃗) for an input vec-
tor x⃗. The dimension of function F (u⃗; x⃗) is equal to the
number of outputs. In order to compute the network con-
nection weights (learning step of the neural network), we
use the BAYESian regularization method as it is discussed
in [4]. Due to the scarcity of data in process-property prob-
lems, which is caused by resource consuming experiments,
this learning method is strongly recommended. In fact, the
BAYESian regularization method is considered to be a rem-
edy to avoid over-fitting in regions of sparse data for classi-
fication problems [4]. In the conventional methods of feed-
forward network training, a vector u⃗ that minimizes the error
function is found by suitable optimization method. On the
other hand, in BAYESian regularization the unknown vector
u⃗ is chosen from a prior distribution, then the most probable
u⃗ is obtained by seeking minimum of the negative logarithm
of the probability which is generally called an error func-
tion. The error function against the expected output y of the
training set for BAYESian regularization is of the form

E(u⃗) =
�
2

S
∑

n=1
(F (u⃗; x⃗n) − yn)2 + �

2
‖u⃗‖2 , (3)

where S is the number of all training data points and �, �
are hyperparameters for weights prior probabilities and vari-
ance of initial distribution for weights. In short, this learn-
ing method deals with data scarcity and over-fitting prob-
lem, besides, its probabilistic nature gives the most probable
model with least complexity for the same performance. It
is discussed in detail with an interpolation example in [4].
In order to minimize the error function (3), we use the well-
known LEVENBERG-MARQUART algorithm that is endowed
with GAUSS-NEWTON approximation to the HESSian matrix
as introduced in [7]. The algorithm finds a local minimum
for u⃗.

For the output, (0001) pole figure, we consider a convo-
lution of two GAUSSian functions of the general form

�(x, y) =
2
∑

i=1
pi exp(−

(x − xi)
2

2�2x,i
−
(y − yi)

2

2�2y,i
) , (4)

where (xi, yi) is the CARTESian coordinate of center of GAUSSian
i (x, y basis plane), pi value of the pole maximum intensity,
�x,i and �y,i are spread of the functions in direction x and y.
3.3. Data analysis

The dimension of data is 10. Since we use a relatively
small set of data, at first, a dimensionality reduction is ap-
plied on the data.

To do this, the so called Local Linear Embedding (LLE)
technique, first introduced in [19], is chosen by a neighbor-
hood graph of size K . This technique is classified as a lo-
cal nonlinear technique, which is promising compared to the
traditional linear methods such as Principal Component and
Linear Discriminant Analysis, cf. [16]. In order to keep the
distance of data points, the technique preserves the manifold
through neighborhood graphs. Preserving the manifold is of
high importance in our study, since we look for the mapping
from meaningful input parameters that in fact have a natu-
ral dependency. If the manifold changes, it means the natural
dependency is changed. Another advantage is that, as a local
technique, it allows for successful embedding of non-convex
manifolds. The latter is also critical for our study, since we
have no prior information over the manifold. The aimed di-
mension for dimensionality reduction is set 4. The result of
Maximum Likelihood Estimator with and without tempera-
ture factor was 2.6. A choice of 4 rather than 3, seems to
be an appropriate choice. To have a unique solution for di-
mensionality reduction as in ROWEIS et al. [19] the choice
K > 4 for the graph is reasonable, since it results in a system
with more equations than unknowns. We set K = 5 in our
observations. To create more data points artificially, we set
one data point aside for testing. Then the remaining data is
regenerated 4 times with a maximum error bound of 1% that
comes from a GAUSSian distribution. In this way we have 40
data entries for training and 1 data for testing. The amount
of test data is very small. To tackle this we circulate the test
data tag over data set and repeat the experiment including
training step.
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Table 1
Collection of sheet property data (TYS and UTS in [MPa], A in [%]

) based on stress-strain curve evaluation of data (Di) according to Figure 3
degree of deformation � = 0.1 � = 0.2 � = 0.3

data points (Di) D1 D2 D3 D4 D5 D6 D7 D8 D9
45◦ TYS 219 227 231 243 222 216 239 222 237

UTS 266 271 270 292 271 267 303 281 283
A 6.27 7.22 6.56 5.62 7.24 11.54 5.37 8.14 8.83

transverse TYS 214 227 226 236 220 217 234 221 223
UTS 267 270 272 294 273 275 302 284 273
A 2.59 1.93 2.57 1.55 1.79 4.85 2.34 3.27 2.95

longitudinal TYS 261 260 252 274 252 240 284 258 250
UTS 279 281 277 305 280 273 323 292 290
A 1.76 4.86 6.72 3.38 3.46 10.57 1.91 2.77 4.99

temperature ◦C 350 400 450 350 400 450 350 400 450

A feedforward network with one hidden layer of size 4 is
applied. The bias only exists on hidden layer and it is a vector
inR4. The total number of unknowns is 4×4+4×2+4 = 28.
It equals to the number of connections between input and
hidden layer and connections between hidden layer and out-
put layer plus 4 biases in the hidden layer. The input and
output data is normalized to [−1, 1] automatically by the
feedforwardnet() function in MATLAB. The GAUSSian
functions of form Eq. (4) are simplified with 2�2x,i = 0.25,
2�2y,i = 0.5, i = 1, 2, (x1, y1) = (1, 1.75), and (x2, y2) =
(1, 1.25). These texture fitting parameters impose the ex-
pected split of peaks in pole figure. p1, p2 are the networkoutput data. With this setting shown in Fig. 4, we step for-
ward to computation.
3.4. Implementation and Error analysis

MATLAB Deep Learning ToolboxTM (formerly Neural
Network ToolboxTM ) R2019a is used for the implementa-
tion. It minimizes the error as given with Eq. (3) by the algo-
rithm as documented in [7]. As discussed in 3.2 the training
avoids over-fitting and results in a network that is generalized
well. The search for the optimal solution of u⃗ and prior dis-
tributions, has a high dependency on the random seed. We
observed that the error for the testing data point varies be-
tween different random seeds. In order to have a meaningful
error analysis we consider

• A network is trained 500 times starting from a fixed
random seed by usingMATLAB function rng(4e5). The
error vector of the test is defined as

[

e1
e2

]

=

[

ej1
ej2

]

j ∶= min
i
max{ei1, e

i
2}, i = 1,… , 500 .

where at each experiment i = 1,… , 500, ei1 = |p1 −
pi1| and similarly ei2 = |p2 − pi2|.

• The relative error vector here is defined as
[

er1
er2

]

=
[

e1∕I1
e2∕I2

]

where
I1 ∶= maxDi

p1 − minDi
p1

and similarly
I2 ∶= maxDi

p2 − minDi
p2

.
• We use every data point once as the test and train the

network with remaining 8 (after regeneration 40) data
points. It gives a more comprehensive evaluation con-
sidering the data availability limitations.

The numerical result for experimental pole figure data
points (p1, p2) from Figure 2 are as shown in Table 2. The
experimental and predicted pole figures can be seen in Fig-
ure 5. The error bars in Figure 5 show the defined relative
error for each data point. As it can be read from the Figure 5,
the relative error is at its peak inD1 andD9. Interestingly atthese points the minimum and maximum of temperature T
and degree of deformation � is attained, which are the two
independent parameters in this experiment. From physical
point of view, for the pointsD1 andD9 no information (data
point) is available on respectively, lower and higher � and
T values. Naturally, the map at these points is not well pre-
sented and consequently, the network was not able to achieve
better prediction. Nevertheless, the average relative error of
all predictions is

[

19.15%
17.15%

]

.

3.5. Manufacturing data space and testing
After the data space defined and the network has trained

and tested for the cases shown in Figures 2, 3 the result in
pole figure data is illustrated in Figure 5. The aimwas to pro-
pose a machine learning framework for application within
a sheet manufacturing route. The two GAUSSian peaks of
I0001(p1, p2) were determined via experiment as shown in
Table 2. Obviously, based on this very limited data set, the
algorithm is capable to correctly predict pole figure data in
most cases. The algorithm predicts on average with an er-
ror less than 20%. With respect to the very limited data
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Start
Consider a collection of sheet physical
properties and manufacturing data

Dimensionality
reduction

Apply a manifold preserving,
locally nonlinear technique

(e.g. Local Linear Embedding)

Tag the data as train and test
datasets for neural network

Assume a basis for pole
figure (e.g. �(x, y))

Determine output of neural net-
work from the basis (here p1, p2)

Train the network with
Bayesian regularization End

yes

no

Figure 4: Proposed Machine Learning Algorithm

Table 2
Error of prediction for each data point as test

D1 D2 D3 D4 D5 D6 D7 D8 D9
p1 12 12 10 10 9.5 9.3 8.7 10 8.7
pj1 13.08 10.91 9.25 9.09 10.12 9.33 9.83 9.6 10.05
e1 1.08 1.09 0.75 0.91 0.62 0.03 1.13 0.4 1.35
p2 10.3 9.2 9.7 7.6 8.0 7.2 8.5 8.0 8.6
pj2 9.09 10.41 9.1 8.51 8.2 7.25 8.85 8.24 9.83
e2 1.21 1.21 0.6 0.91 0.2 0.05 0.35 0.24 1.23

space and consequent simplifications in GAUSSian function,
the process-structure-property correlation is clear, however
there is plenty of room to improve the accuracy. For a further
reduction of error bounds, cost-effectiveness has to be taken
into account, cf. [23]. To manage deviations at the bound-
ary of the parameter window and to reduce errors additional
training data is required. Indeed availability of data make it
possible to include more free parameters in GAUSSian func-
tion (such as �x,i, �y,i, (xi, yi)) and determine them in the
learning step. Application of more complex networks to
improve the accuracy has discussed comprehensively in the
field of machine learning. The complexity of network in the
context of feedforward networks is obtained by adding more
network unknowns, which requires more data points to yield
a reliable solution. Another possible strategy for consider-

able improvement is change in mathematical basis which is
the backbone of our algorithm. Applying functions other
than GAUSSian function, that are more compatible with the
nature of the pole figure or other property defining concepts
can have a huge influence on better performance of proposed
algorithm.

Figure 6 illustrates how the application of the algorithm
simplifies the data space with D9 as a representative test
sample. The algorithm predicts

[

10.1
9.8

]

which is still in good

agreement to the experimental values
[

8.7
8.6

]

despite the fact
that the test data is allocated at the parameter window bound-
ary. Tolerating a certain error bound, with a very limited
manufacturing data space, the algorithm enables end-users
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Figure 5: For each data point Di experimental result at the left (targeted pole figure) vs. the algorithm based prediction at the
right. The relative error is represented as red bar for the pole intensity p1 and blue for p2. Note that each column has fixed �
and each row fixed T .

to efficiently and fast adapt process parameters. In a pre-
scriptive manner, it can be embedded within a software and
actor control unit, in-situ for better intelligent processing.
The capabilities of the algorithm and the efficiency in predic-
tion and correlation might be extended by adding more data
from literature, image analysis, monitoring data or materials
/ process simulations as indicated in Figure 6.

Figure 6: Condensing the huge experimental data space for
wrought processing to a limited manufacturing data space en-
abling fast intelligent process adaption (here for example D9).
Data space extension by literature data, physics based simu-
lations, image and other monitoring data to guarantee repro-
ducible processing is recommended.

4. Conclusions
Knowledge- and physics based process – property corre-

lation is of high demand in magnesium sheet manufacturing.
Here, an efficient machine learning framework is suggested
to facilitate intelligent sheet manufacturing. In a test sce-
nario for magnesium alloy AZ31 despite the complex inter-
dependencies of processing parameters, we illustrated that

machine learning has a high potential for sheet property pre-
diction. Application of the algorithm in order to predict pole
figures (data) from stress-strain curvemeasurements and two
processing parameters shows good correlation with respect
to the data. The developed algorithm applies dimensional-
ity reduction, a feedforward neural network, BAYESian reg-
ularization including precise error minimization and analy-
sis, and allows to look for correlation within very limited
data spaces. If we take a look into the future the approach
might be used to create efficient manufacturing data spaces
enabling intelligent processing routes and Industry 5.0.

Acknowledgment
Research leading to these results has received funding

from internal scientific funding IFF-2019 of HELMUT-SCHMIDT
-University / University of the Federal Armed Forces Ham-
burg.

Data availability
The raw data required to reproduce these findings are

available to download from [https://github.com/mrshariati/Mg-
sheet-machine-learning-algorithm]. The processed data re-
quired to reproduce these findings are available to download
from [https://github.com/mrshariati/Mg-sheet-machine-learning-
algorithm].

CRediT authorship contribution statement
Mohamadreza Shariati: ML Methodology, Software,

Writing. Wolfgang E.Weber: Data interpretation, Writing.
Jan Bohlen: Data interpretation, Writing. Gerrit Kurz:
Experimental data, Data evaluation, Writing. Dietmar Let-
zig: Conceptualization of this study. Daniel Höche: Con-

Page 7 of 8



ML based Mg sheet processing

ceptualization of this study, Data curation, Writing - Origi-
nal draft preparation.

References
[1] Aljarrah, M., Essadiqi, E., Kang, D., Jung, I.H., 2011. Solidification

microstructure and mechanical properties of hot rolled and annealed
mg sheet produced through twin roll casting route. Materials Science
Forum 690, 331–334. doi:10.4028/www.scientific.net/MSF.690.331.

[2] Bachmann, F., Hielscher, R., Schaeben, H., 2010. Texture analysis
with mtex - free and open source software toolbox. Solid State Phe-
nomena 160, 63–68.

[3] Basson, F., Letzig, D., 2010. Aluminium twin roll casting transfers
benefits to magnesium. Aluminium International Today , 19–21.

[4] Bishop, C.M., 1995. Bayesian Methods for Neural Networks. Tech-
nical report ed., Aston University, Birmingham.

[5] Bohlen, J., Kurz, G., Yi, S., Letzig, D., 2012. Rolling of magne-
sium alloys, in: Advances in Wrought Magnesium Alloys. Elsevier,
pp. 346–375.

[6] Chino, Y., Mabuchi, M., 2009. Enhanced stretch formability of mg–
al–zn alloy sheets rolled at high temperature (723 k). Scripta Materi-
alia 60, 447–450.

[7] Foresee, F.D., Hagan, M.T., 1997. Gauss-newton approximation to
bayesian learning. Proceedings of International Conference on Neural
Networks (ICNN’97) 3, 1930–1935. doi:10.1109/ICNN.1997.614194.

[8] Haykin, S.S., 2009. Neural Networks and Learning Machines. 3th
ed., Pearson.

[9] Jeong, H.T., Ha, T.K., 2007. Texture development in a warm rolled
az31 magnesium alloy. Journal of Materials Processing Technology
187, 559–561.

[10] Jin, L., Dong, J., Wang, R., Peng, L., 2010. Effects of hot rolling
processing on microstructures and mechanical properties of mg–3%
al–1% zn alloy sheet. Materials Science and Engineering: A 527,
1970–1974.

[11] Kawalla, R., Oswald, M., Schmidt, C., Ullmann, M., Vogt, H.P.,
Cuong, N.D., 2008. Development of a strip-rolling technology for
mg alloys based on the twin-roll-casting process. TMS Magnesium
Technology , 177–182.

[12] Kleiner, M., Curbach, M., Tekkaya, A.E., Ritter, R., Speck, K.,
Trompeter, M., 2008. Development of ultra high performance con-
crete dies for sheet metal hydroforming. Production Engineering 2,
201–208. doi:10.1007/s11740-008-0099-z.

[13] Kree, V., Bohlen, J., Letzig, D., Kainer, K., 2004. The metallograph-
ical examination of magnesium alloys. Practical Metallography 5,
233–246.

[14] Kurz, G., Bohlen, J., Letzig, D., Kainer, K., 2013. Influence of process
parameters on twin roll cast strip of the alloy az31. Materials Science
Forum 765, 205–209. doi:10.4028/www.scientific.net/MSF.765.205.

[15] Kurz, G., Pakulat, S., Bohlen, J., Letzig, D., 2015. Rolling twin roll
cast magnesium strips with varied temperature and degree of defor-
mation. Materials Today. Proceedings 2S, 39–44.

[16] van der Maaten, L.J.P., 2007. An Introduction to Dimensionality Re-
duction Using Matlab - Bayesian Methods for Neural Networks. Re-
port MICC 07-07 ed., MICC, Maastricht University.

[17] Nestler, K., Bohlen, J., Letzig, D., Kainer, K.U., 2007. Influence of
process parameters on the mechanical properties of rolled mangne-
sium zm21-sheets. Magnesium Technology 2007 , 95–100.

[18] Park, S.S., Bae, G.T., Lee, J.G., Kang, D.H., Shin, K.S., Kim, N.J.,
2007. Microstructure and mechanical properties of twin-roll strip cast
mg alloys. Materials Science Forum 539/543, 119–126.

[19] Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction
by locally linear embedding. Science 290, 2323–2326. doi:10.1126/
science.290.5500.2323.

[20] St John, D.H., 2007. Overview of current international magnesium
research and recent cast crc developments. Advanced Materials Re-
search 29-30, 3–8.

[21] Victoria-Hernandez, J., Yi, S., Bohlen, J., Kurz, G., Letzig, D., 2014.
The influence of the recrystallization mechanisms and grain growth

on the texture of a hot rolled az31 sheet during subsequent isochronal
annealing. Journal of Alloys and Compounds 616, 189–197.

[22] Watari, H., Haga, T., Paisarn, R., Koga, N., Davey, K., 2007. Mechan-
ical properties and metallurgical qualities of sheets manufactured by
twin-roll casting. Key Engineering Materials 345/346, 165–168.

[23] Weber, W.E., Reuter, U., 2017. Fuzzy modeling of wave-shielding
under consideration of cost-effectiveness for an efficient reduction of
uncertainty. Advances in Engineering Software 109, 53–61. doi:10.
1016/j.advengsoft.2017.03.005.

Page 8 of 8

http://dx.doi.org/10.4028/www.scientific.net/MSF.690.331
http://dx.doi.org/10.1109/ICNN.1997.614194
http://dx.doi.org/10.1007/s11740-008-0099-z
http://dx.doi.org/10.4028/www.scientific.net/MSF.765.205
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1016/j.advengsoft.2017.03.005
http://dx.doi.org/10.1016/j.advengsoft.2017.03.005

