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1 Introduction

Greenhouse gas emissions related to combustion of fossil fuels are regarded as the main cause of global
warming. In order to reduce the dependence on non-renewable energy carriers, fuels can be blended with
different percentages of bio-ethanol. Second and third generation bioethanol can be obtained from ligno-
cellulosic waste or algal biomass, respectively, and is considered a sustainable energy source which does
not compete with worldwide food supplies.[1, 2] Each country regulates the allowed amounts according
to norms, e.g. DIN EN 15376 in Germany or ASTM D 4806 in the United States.[3] Nonetheless, the
increased reactivity of alcohols in comparison to inert hydrocarbons can be problematic in combinations
with certain materials that are used in automotive construction.

In particular, the high pitting corrosion susceptibility of aluminium alloys in ethanol containing fuels
with a low water content raised the attention of materials science community in recent years.[4–13] The
bulk of the publications focuses on a phenomenological description of the pitting occurrence and the
effect of temperature and water and ethanol content. It can be concluded from existing research that
high temperature and ethanol percentage as well as low water content increase the pitting susceptibility
of aluminium alloys.[7–9] Nonetheless, the delicate balance between pit initiation and growth, the num-
ber of influencing factors and the high degree of uncertainty of experimental outcomes impedes precise
quantitative conclusions towards compatibility predictions.

Calabrese et al. recently postulated a complete mechanism, starting from passive layer breakdown due
to water loss to pit propagation on Al alloys in anhydrous ethanol at elevated temperatures.[12] Park et
al. elaborated the effect of dissolved oxygen on the corrosiveness of E20 fuels on Al alloys and concluded
that it has a passivating effect due to released water molecules upon ethanol oxidation.[6] Kruger’s and
Thomson’s results indicate that galvanic effects do not affect the corrosion behavior of Al alloys.[7, 9]

Furthermore, although the general reaction pattern of aluminium in water-free ethanol (so called ”dry
corrosion”, see Refs. [4–13]) is well accepted, several authors do not address or elaborate the differences
between a possible chemical and electrochemical mechanism.[4, 11, 13] This is problematic because the
results of often employed electrochemical methods for corrosion prediction are not directly applicable for
forecasting alloy behavior for service-oriented conditions.

The concept of competing electrochemical and chemical corrosion mechanisms was introduced by Kolo-
tyrkin and co-workers in order to explain the discrepancies between calculated and measured corrosive
mass losses of iron and chromium in acidic aqueous solutions.[14] The effect was also described by Garreau
for Al in ethanol electrolytes and explained with the existence of a monovalent Al-ion intermediate and
subsequent competition between a chemical and electrochemical route.[15] The extent of each is mainly
determined by the Al+ stability in the particular electrolyte.
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Although statistical analysis of localized corrosion is well established,[16–19] to the best of our knowledge,
there are no publications which employ such methods on temperature-induced pitting in organic solvents.
The aim of this work is to discuss the corrosion mechanism of Al alloys in anhydrous ethanol and to
apply data-based statistical methods on experiments with AA1050 alloy in water-free ethanol in order to
forecast time-dependent pitting susceptibility and pit sizes. The results will be the base in development
of a comprehensive model which is able to simulate Al alloy corrosion behavior in ethanol containing
fuels.

2 Preliminary consideratons

2.1 Competing pit growth reaction mechanisms

As mentioned in the introduction, the growth mechanism of Al alloy high temperature localized corrosion
can not solely be viewed with the established electrochemical mechanistic assumptions which are known
from room-temperature aqueous corrosion. Here, an attempt to understand the interplay between possible
corrosion modes is made.

It is well accepted that ”classical”, aqueous pitting corrosion occurs due to a localized damage in the pas-
sive layer which is stimulated by aggressive anions. In the growth phase, the pit surface becomes anodic
and the passive layer outside is cathodic. The process is accelerated by possible cathodic inclusions. The
driving force of the dissolution is the potential gradient between the two short-circuited microelectrodes
and their geometric relation.[20] That concept implies locally separated electrochemical reactions. How-
ever, there is evidence for the existence of a different mechanism. The potential-independent process can
be regarded as ”chemical corrosion” and was reported for numerous elements in aqueous solutions, includ-
ing Fe,[14, 21] Ni[21, 22] and Al.[21, 23] The electron transfer takes place directly between a metal atom
and the oxidant without inducing a current flow in the electrode.[24] There are several factors that make
the aforementioned chemical corrosion mechanism predominant in the system under investigation:

• The analyzed pits on the surfaces exhibit remarkably uniform shapes (see sec. 4.1). Geometrical
effects of potential driven corrosion reactions would induce some kind of asymmetry, depending on
the relative position of the microelectrodes and the induced electric field.

• The initial conductivity of the utilized ethanol was measured at around 0.1 µS cm−1. The low value
is caused by the absence of ions and a low autoprotolysis constant of EtOH which makes a rapid
electrochemical reaction unlikely.

• Due to the different apparent activation energies and thus, temperature dependencies of the chemical
and electrochemical processes, it is expected that at high temperatures the chemical mechanism
predominates.[25, 26] The assumption is supported by findings of Krüger et al. who measured up
to three orders of magnitude larger mass losses gravimetrically compared to the calculated values
from electrochemical current measurements. The deviations increased with higher temperatures.[7]

• Thomson et al. did not find any differences in corrosion kinetics despite galvanically coupling Al
to brass, stainless steel or copper in practically water-free ethanol.[9]

We postulate that the molar Al dissolution flux across the active pit surface is a sum of a chemical
and electrochemical reaction. The fractional contribution of each depends on the experimental vari-
ables. Assuming an adsorption-reaction mechanism for the chemical rate and an activation-controlled
electrochemical process, it can be written:
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jtot = jchem + jechem (1)

jchem =
kadskrc(EtOH)Γ

kadsc(EtOH) + kr
(2)

jechem =
icorr
zF

[
exp

(
2.3η

βa

)
− exp

(
− 2.3η

βc

)]
(3)

where kads and k r are the kinetic constants of adsorption and reaction, respectively, c(EtOH) is the
ethanol concentration, Γ the total surface site concentration. The electrochemical path is formulated in
terms of the easily accessable corrosion current density icorr and the anodic and cathodic Tafel parameters
βa and βc. The chemical path is considered to be a consecutive adsorption of an ethanol molecule and a
reaction to ”Al-EtO” complex. The rates are characterized by respective kinetic constants. The units of
the electrochemical reaction j echem have to be adjusted to a molar flux in order to be summable to j chem.
The ethanol concentration dependence of j chem is assumed to be of first order but might be different
according to the exact mechanism. The parameters kads and k r have an Arrhenius type temperature
dependence but different apparent activation energies. The dependence of icorr on temperature is more
complex because two half-reactions with separate exchange current densities are involved.

Estimations of the temperature dependence of the electrochemical reaction can be made based on the
measurements of Kramer et al..[13] Corrosion current densities of AA1050 in anhydrous ethanol were
approximated by means of Tafel analysis at different temperatures. It increased from 0.039 µA cm−1 at
25 ◦C to only 0.069 µA cm−1 at 50 ◦C. The absolute values should be treated with care because the pitting
mechanism was not taken into account. However, the marginal increase of 76 % can be considered as
indication for weak temperature dependence.

In Fig. 1, a schematic Arrhenius plot of chemical and electrochemical reaction kinetics is shown. The
larger activation energy of the chemical flux j chem is, depending on the rate determining step, either
adsorption or reaction related, leading to a stronger dependence on temperature. Thus, a positive cor-
relation between temperature and j chem. Because j chem is only estimated, it can not be stated whether
and where there exists an intersection point of j chem and j echem. Furthermore, it has to be noted that
the use of the term ”activation energy” only applies to elemental reaction steps and especially in case
of the electrochemical reaction the term ”apparent activation energy” is more appropriate. Nonetheless,
the scheme is able to sketch the general competing mechanism.

3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4

 T
-1

 / K
-1 10

-3

-21

-20.8

-20.6

-20.4

-20.2

-20

-19.8

-19.6

-19.4

-19.2

ln
(
j)

 E
A,chem

 >  E
A,chem

  j
echem

 from Kramer  et al.

 linear fit

  j
chem

 estimated

Figure 1: Effect of different apparent activation energies on chemical and electrochemical reaction kinetics. Data
points for j echem were taken from Ref. [13] for AA1050.

The fact that the Arrhenius plot of j echem shows linear behavior for the measured temperatures (25 -
50 ◦C) enables the possibility of extrapolation for temperatures at which electrochemical measurements
become inconvenient, assuming no limiting factors appear. The estimated parameters for j echem are
EA = 18.2 kJ mol-1 and A = 2.11× 10−6 mol m-2 s-1.
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The proposed simple model from eq. 1 can be expanded under consideration of intermediates as shown in
Fig. 2. Anodic dissolution of Al under applied potential involves the electrochemical 1e-oxidation of Al
atom to a surface-bound monovalent Al ion (step 1b).[15, 27, 28] Only from this intermediate, further 2e-
oxidation leads to the formation of a trivalent cation. Step 2b is slow and therefore, rate-determining.[28]
However, Al+ can be complexated by an ethanol molecule in reaction 2a to form a surface complex. A
direct chemical oxidation of an Al atom (1a) by an ethanol molecule is another possible pathway to the
described complex. This is a Kolotyrkin-type ”chemical” surface-reaction. Steps 1a and 2a are EtOH
concentration-dependent reactions whereas 1b and 2b are typical electrochemical, potential-dependent
processes. In step 3, the complex desorbs from the surface into bulk solution. The stability of such
complexes was proven to be higher in non-aqueous alcoholic solvents.[27] A homogeneous red-ox-reaction
(step 4) with two ethanol molecules leads to formation of molecular hydrogen and aluminium ethanolate.
This pathway would explain the colloidal state of the corrosion product which is frequently observed.[8,
10, 12]

Al Als
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Al-EtOs Al-EtObulk Al3+ + 3EtO-

EtOH

H+

2EtOH H2
chemical

electrochemical

EtOH
H

+

1a

1b

2a

2b

3 4

Figure 2: Possible scheme of competition between chemical and electrochemical mechanisms of Al dissolution
in anhydrous ethanol. Index s stands for surface species.

With the currently employed apparatus, there is no possibility to directly distinguish between the path-
ways by means of a ”post mortem” analysis. However, the estimated kinetic parameters based on gen-
erated data can be regarded as j tot and the contributions of each flux can then be estimated based on
electrochemical measurements from literature.
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3 Experimental

Preparation of specimen: The experiments were conducted using commercially pure aluminium
- Al EN AW 1050A procured from an industrial manufacturer having 99.5 % Al purity with the main
impurity being Fe (0.32 %). Identical test samples (50 mm x 10 mm x 5 mm) were cut along the rolling
direction, containing different grain structures on consequent faces as indicated by EBSD (Fig. 3). Only
the 50 x 10 mm surfaced were considered for pit analysis in order to ensure a homogeneous surface for pit
initiation. The samples were ground on all sides by means of a well lubricated silica wheel of grit P1000
at a considerably low speed, avoiding silica embedment on the surface.

Figure 3: Sample dimensions with respective EBSD images after experiments indicating different grain structures
depending on rolling direction.

Experiment description: High-pressure autoclaves/reactors were implemented to conduct the neces-
sary experiments. As shown in Fig. 4, for each experiment, a freshly ground sample was placed in a
reactor using PTFE holders. High purity anhydrous ethanol was used for the experiments (Carl Roth
ROTIPURAN® ≥ 99.8 %) containing 0.03 ± 0.01 v/v % water, measured using Karl-Fischer titration.
For each experiment, 200 mL ethanol was directly loaded using a tube, from the bottle to the closed
reactor, through the pressure relief valve. As ethanol is known for its water affinity, this method es-
tablished a uniform and low water contamination in every experiment. During the test, pressure and
temperatures (reactor wall/medium) were periodically recorded every 15 seconds with an accuracy of
0.1 bar and 0.1 ◦C, respectively. After the experiments, samples were cleaned using concentrated nitric
acid and photographed using optical microscopes. Pit analysis was conducted using ImageJ software.

Statistical analysis: Analysis of pit maxima was conducted according to block-maxima method.[18]
The reacted sample was subdivided into ten equally sized coupons and the size of the largest pit was
measured. These were regarded as independent and identically distributed (iid) random variables and
thus, suitable for extreme-value analysis.

According to Fisher-Tippett-Gnedenko theorem, extreme value distributions converge to three asymptotic
cases: Weibull, Gumbel and Frechet.[29, 30] All of them can be expressed in the Jenkinson-von-Mises
parametrization depending on a shape parameter ξ:[31, 32]

ξ = 0 G(x;µ, β) = exp[−exp(−x− µ
β

)] (4)

ξ 6= 0 G(x;µ, β) = exp(−[1 + ξ(
x− µ
β

)]−1/ξ) (5)
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Figure 4: Schematic reactor setup for pit data generation.

where ξ = 0 corresponds to a Gumbel distribution with an exponential tail. The Frechet distribution
has a positive ξ and a polynomial decay whereas the Weibull distribution corresponds to a negative ξ
and a finite upper endpoint. The variables µ ∈ Z and β > 0 are the location and shape parameters,
respectively.

Probability weighted moments br of data samples X i can be calculated :[33]

b0 = n−1
n∑

i=1

Xi (6)

br = n−1
n∑

i=1

(i− 1)(i− 2) · · · (i− r)
(n− 1)(n− 2) · · · (n− r)

Xi (7)

The first two L-moments l are related to b:[34, 35]

l1 = b0 (8)

l2 = 2b1 − b0 (9)

The Gumbel parameters can be expressed by means of L-moments:[34]

µ = l1 − γβ (10)

β =
l2

log 2
(11)

where γ is the Euler-Mascheroni constant.

The null-hypothesis that the iid samples are actually drawn from a Gumbel distribution was tested by
means of the Modified Anderson-Darling (MAD) test for maxima. The test ensures that deviations of
the tested distribution from a hypothetical distribution with known parameters are penalized to a higher
degree on the upper end. The corresponding MAD test value AU2

n for maxima is:[36]
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AU2
n = n

∫ ∞
−∞

[Gn(x)−G(x)]2

1−G(x)
dG(x) (12)

and the derived formula for computation is:[36]

AU2
n =

n

2
− 2

n∑
i=1

G(xi)−
n∑

i=1

[
2− 2i− 1

n

]
log(1−G(xi)) (13)

where n is the number of extreme pit sizes, G(x ) is the cumulative distribution function and Gn(x ) is
the empirical distribution function with estimated parameters.

The AU2
n values are then used to estimate the corresponding p value in order to reject or accept the

null hypothesis. In order to calculate a p-value for each assigned distribution function, a Monte Carlo
procedure was employed. N (MC ) = 10000 samples with n observations each were generated according
to the estimated Gumbel parameters. For each of the samples, the MAD test was conducted. Thus, the
percentage of smaller AU2

n values compared to the observed AU2
n value is related to the p-value:

p = 1− N [AU2
n(calc) < AU2

n(obs)]

N(MC)
(14)

With a commonly chosen significance level of 5 %, the hypotheses of all specimen with p < 0.05 are
rejected and thus, are considered not in a Gumbel attraction domain.

At this point, it is emphasized that if a sufficient amount of data can be generated (e.g. for other alloys
and liquid composition), a machine learning algorithm can easily be written based on the aforementioned
equations in order to facilitate a faster forecast method.
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4 Data analysis and discussion

4.1 Pre-processing of experimental data

Because the reaction has to be conducted in a closed, pressure-sealed vessel, it leads to some issues
regarding the accessible data. The absence of an optical contact and the non-electrochemical nature of
corrosion complicate tracking of pitting initiation and progress. A way to estimate reaction times based
on accessible data is presented here. Only two parameters can be precisely measured with respective
sensors: pressure and temperature. The measured pressure in the reaction vessel is a sum of the ethanol
vapor pressure and hydrogen partial pressure:

pvessel = pEtOH + pH2
(15)

The empiric Antoine equation for the ethanol vapor pressure in the temperature range of interest is:[37]

pEtOH,calc = 104.9253−
1432.53

−61.82+T (16)

In addition, one has to account for the solubility of hydrogen in ethanol which delays the pressure rise
by some time span. The molar fraction is given by:[38]

xH2 = 0.000016(pH2T ) + 0.000594 (17)

With the above considerations, it seems possible to approximate the onset of pitting because the overall
reaction equation

Al + 3 C2H5OH −−→ Al3+ + 3 C2H5O− +
3

2
H2 (18)

implies that corrosion is accompanied by hydrogen evolution.

In Fig. 5 (a), a schematic reaction progress of a typical experiment is shown. The first stage theat
represents the external heating of the reaction vessel to the preset temperature (red). The process induces
a simultaneous ethanol vapor pressure rise (green). After the temperature is reached, the induction phase
t ind is characterized by a constant temperature and pressure. When the first pits start growing due to
local breakdown of the passive layer in the reaction phase t r, a pressure rise can be measured due to
evolving hydrogen (yellow). Because the reaction is exothermic, the temperature slightly increases as
well. The reaction is interrupted when a certain predefined pressure threshold is reached. Without a
threshold, the reaction would proceed auto-catalytically and converts the specimen to corrosion product
without the possibility of analyzing the pits.

T

p

N(pits)

time

theat trtind

pH2

(a) Schematic diagram of T, p and number of pits
with arbitrary units.
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Figure 5: Development of temperature and pressure in a typical experiment with corresponding specific time
intervals.
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In Fig. 5 (b), exemplary real temperature and pressure data is shown. The ethanol vapor pressure was
calculated according to eq. 16 and 17. Measurable pitting starts at around 42 minutes after a heating time
of 37 minutes and an induction time of approximately five minutes. The data resembles the theoretical
curves from (a) by and large. The small pressure rise at 26 minutes and 100 ◦C can be attributed to
evaporation of physisorbed water in the vessel.

Of course, the strict time subdivisions in Fig. 5 (a) and (b) are very idealized. The line between t ind and
t r is probably not that strict. In fact, because the employed reactor is not able to detect small pressure
jumps (accuracy 0.1 bar), formation of the very first pits can not be measured precisely. This might
lead to problems in the extreme value analysis, as will be shown in section 4.3. In addition, the energy
release of the corrosion reaction leads to a simultaneous temperature rise in the vessel, which probably
has a significant effect on the initiation process. This is a big disadvantage in contrast to electrochemical
pitting corrosion experiments where a potential can be exactly set for the whole experiment and the
starting point is precise.

A total pit size distribution histogram of sample with tR = 344 s and T = 110 ◦C is exemplary shown
in Fig. 6. The distribution seems unimodal which corresponds to only one population of pits which
supports the assumption of non-existent metastability. As can be seen in the inset, the pit population
is randomly distributed over the sample surface. As can be seen from the fitting curves, lognormal
distribution is more appropriate for the pit population than Gauss distribution. The same tendency
was observed for all analyzed samples and confirmed by maximum likelihood calculations. Lognormal
distributions are commonly found as a realization of multiplicative, non-linear, random processes.[39]
In this case, the finding can be interpreted in terms of the pit initiation process: The locally different,
temperature-dependent dehydration probabilities are multiplied for probability calculation of a critical
state at which a pit nucleates. The resulting nucleation times and thus, the pit sizes, then converge to a
lognormal distribution.
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Figure 6: Exemplary histogram of pit size distribution of a reacted AA1050 specimen with corresponding Gauss
(dashed) and lognormal (solid) distribution fit. The reaction temperature was set to 110 ◦C and tR was 344 s.
The analysed area was 2.5 cm2. The inset shows a micrograph of the specimen after reaction (scale bar = 0.1 cm).

In Fig. 7, an exemplary micrograph and a depth profile of the largest pit after reaction at 110 ◦C is shown.
At the bottom, a perforation was caused by a pit originating at the opposite site of the speecimen. The
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apparent hexagonal shape is remarkable and not typical of regular aqueous corrosion experiments. In
fact, all of the observed pits exhibit a very similar shape. The shapes might be formed due to direction
dependent chemical dissolution kinetics as known from e.g. anisotropic etching.[40] However, the shape
is a bit puzzling because Al crystallizes in a face-centered cubic structure and thus, does not exhibit a
trigonal symmetry. There might be a connection to the hexagonal corundum (α-Al2O3) structure but
this aspect requires further study. Nonetheless, we believe that the symmetric appearance and lack of
secondary pits is a strong indicator for a predominantly chemical corrosion mechanism.

Figure 7: Micropgraph and depth profile of the largest pit on AA1050 specimen after reaction at 110 ◦C.
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4.2 Induction times analysis

The uncertainty of experimental outcomes and high data scattering is well known for alcoholate corrosion
of Al alloys.[8, 9] In this section, it is assessed whether a statistical analysis can be employed for the
description of the highly stochastic nature of passive layer breakdown events which can facilitate a non-
trivial comparison between experiments. Weibull distribution is often employed for dealing with pitting
related problems.[19, 41, 42] Here, we fit the measured induction times t ind to the function in order to
calculate a robust expected value of corrosion onset. The density function of the Weibull distribution
is

f(t;λ, k) =
k

λ
(t/λ)k−1exp(−(t/λ)k) (19)

and the cumulative distribution is

F (t;λ, k) = 1− exp(−(t/λ)k) (20)

where k > 0 is the shape parameter and λ > 0 is the scale parameter.

In order to obtain the Weibull parameters it is necessary to plot ln(t ind) vs ln(ln[ 1
1−F(tind)

]). The cumu-

lative distribution F is calculated as follows: The induction times are sorted in ascending order as seen in
Tab. 1. For each t ind with an assigned order i, F (t ind) = i

N+1 where N is the total number of experiments
(here 8). Linear fitting of the data for T = 105 ◦C and 110 ◦C is shown in Fig. 8 (a). The resulting
parameters and expected values are summarized in Tab. 2 It can be stated that the induction times
can be fitted sufficiently well to the Weibull distribution. As expected, the mean increases with higher
temperature. It is notable that both shape parameters k are close to or equal unity which corresponds
to an exponential distribution. A steeper rise of the cumulative probability of t ind(110 ◦C) compared to
t ind(105 ◦C) can be seen in Fig. 8 (b) which represents a higher failure probability at shorter times.

Table 1: Summary of induction times t ind in ascending order for experiments at 105 ◦C and 110 ◦C, respectively.

i T = 105 ◦C / s T = 110 ◦C / s

1 120 49
2 438 75
3 660 163
4 774 165
5 786 181
6 924 346
7 1770 491
8 3438 840

The question whether a clear physical meaning can be assigned to the calculated parameters can be
answered considering the assumed pit initiation mechanism. If dehydration of gibbsite to boehemite
and alumina and the accompanying formation of pores in the passive layer is the critical factor, the
temperature has a crucial effect on the reaction kinetics as was shown in several publications.[43, 44]
Thus, it is feasible to assume that λ is proportional to the kinetic constant of the dehydration process
but also to the composition and structure of the passive layer which defines the local critical water loss
for pit formation. Because those parameters are difficult to access experimentally, λ might be used as a
characteristic failure probability estimator for an alloy and temperature combination.

The applied statistical analysis certainly enables a more quantitative prediction of component integrity
of AA1050 due to dry corrosion. However, caution is advised due to the presumptions that were made.
It can not be excluded that first pits initiate prior to the measurable reaction time onset. For a more
profound failure probability analysis it would be advantageous to facilitate detection of the very first
pits.
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Table 2: Estimated Weibull scale and shape parameters for measurable pitting induction times at different
temperatures and deduced expected mean values.

T / ◦C k λ / s mean / s R2

105 0.947 7.83× 10−4 1240 0.926
110 1.00 3.03× 10−3 330 0.953
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(a) Linear fit of pitting induction times on AA1050 at
105 ◦C and 110 ◦C in a Weibull plot.
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Figure 8: Statistical analysis of pitting induction times on AA1050 in anhydrous ethanol.
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4.3 Pit Extreme Value Analysis

It is well accepted that pits initiate at defective sites of the passive layer and the process is stimulated
by aggressive anions.[45] However, in our case, it is assumed that the passive layer is disrupted by
temperature-induced water loss of aluminium hydroxide and boehemite.[12] Here, we aim to elaborate
whether the extreme value theorem can be applied to generated experimental data in order to predict
maximum pit sizes on Al alloys.

In order to be able to apply the extreme value analysis to any problems, the drawn values have to be iden-
tically independently distributed (iid).[46] This presumption was doubted by Melchers who emphasized
the effect of metastable growth on the final pit population.[16] However, a requirement for metastabil-
ity is the possibility of repassivation which is not met in water-free environment. The lack of passive
layer and the present potential-independent, chemical corrosion ensures that existing pits continuously
propagate.

The successful application of the procedure also implies an unchanging growth law for entire observation
time.[16, 47] It might be problematic for very long exposure times and varying growth functions, however,
in our research the experiment times are fairly short in comparison to typical corrosion experiments.

The Gumbel parameters β and µ can be estimated by plotting the block maxima appropriately against
the empirical cumulative distribution and performing a regression analysis.[19, 41, 48, 49] These so
called Gumbel probability papers use a double-logarithmic form of eq. 4 where the empirical cumulative
probability G is calculated analogous to the procedure described in section 4.2.[17, 18, 48, 50, 51] For the
sake of visualization, classical Gumbel plots are shown in Fig. 9 and 10. The curves show good linearity
for most of the samples which indicates right choice of parent distribution function.
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Figure 9: Gumbel plots of pit block maxima radii from reacted AA1050 specimen at 110 ◦C with corresponding
reaction times tR. All samples fall into Gumbel domain of attraction.

However, there are more reliable methods for Gumbel parameter estimations. These include techniques
like maximum likelihood method[52–54], method of moments and method of probability weighted mo-
ments.[34, 55] There is strong evidence that the method of probability weighted moments outperforms the
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other procedures, especially for small sample sizes.[56, 57] Thus, probability of weighted moments (PWM)
method was used as unbiased estimator by means of L-moments calculation introduced by Hosking.[35]

The calculated Gumbel parameters are summarized in Tab. 3 for T = 110 ◦C and in Tab. 4 for T =
105 ◦C. For quantitative assessment of the fit, the obtained Gumbel parameters were tested by means
of the modified Anderson-Darling (MAD) goodness-of-fit test for Gumbel distributions.[36, 58] It was
proven to be superior to other significance tests like chi-square, Kolmogorov-Smirnov or Cramer-von-
Mises, especially for low sample sizes.[59] The p-value was used as the null-hypothesis rejection criterion.
For a significance level α = 0.05, the null hypothesis could not be rejected for almost all analyzed
samples. Only sample No. 14 exhibits a lower p-value and thus, the sizes can not be described by
Gumbel distribution. This is supported by the curve in Fig. 10 where the slope deviates strongly from
a linear trend. Attempts to fit the data to other extreme value distributions were unsuccessful. The
reason could be slight inconsistencies in surface treatment (especially Si inclusions at the sample edges
due to polishing procedure) and the resulting varying pitting susceptibility and corresponding violation
of the iid criterion. Preliminary test revealed strong pitting sensitivity to surface preparation of the
specimen. Nonetheless, because the issue only appeared on one of 14 specimen, it can be stated that
Gumbel analysis is an appropriate distribution for extreme pit sizes on AA1050 in pure ethanol.

As the next step, the Gumbel parameters were correlated to the reaction time tR which is shown in Fig.
11. It can be seen from Fig. 11 (a) and (b) that for the higher reaction temperature, both β and µ
have a positive correlation. This behavior is expected and was frequently reported for potential-driven
aqueous pitting experiments.[17, 51] For the lower reaction temperature, the correlation is less clear. It
looks inversely proportional for β at low tR but increases for the longest reacting specimen. A positive
correlation of µ at low tR can be seen in Fig. 11 (b) but the trend is disrupted by the longest reacting
specimen.

In Fig. 12, a plot of expected maximum pit radii against the reaction time is shown. The expected values
were calculated by means of the Gumbel parameters according to the equation

E(X) = µ+ βγ (21)
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Table 3: PWM estimated Gumbel parameters and corresponding modified Anderson-Darling (MAD) p-values
of specimen which reacted at 110 ◦C for different duration. β and µ can be interpreted as standard deviation

and mean of maximum pit radii whereas the p-value is a measure for the correctness of the chosen parent
distribution.

Sample No. tR / s β · 10-3 / cm µ · 10-3 / cm MAD p-value

1 344 21.5 36.4 0.616
2 327 9.97 45.2 0.810
3 314 3.99 51.0 0.095
4 316 12.0 26.0 0.074
5 262 9.97 29.4 0.441
6 311 12.3 39.4 0.662
7 135 2.79 11.8 0.228
8 405 8.97 61.2 0.499

Table 4: PWM estimated Gumbel parameters and corresponding modified Anderson-Darling (MAD) p-values
of specimen which reacted at 105 ◦C for different duration. β and µ can be interpreted as standard deviation

and mean of maximum pit radii whereas the p-value is a measure for the correctness of the chosen parent
distribution.

Sample No. tR / s β · 10-3 / cm µ · 10-3 / cm MAD p-value

9 249 16.9 41.8 0.357
10 5660 172 31.4 0.668
11 296 13.9 45.6 0.226
12 331 11.3 48.6 0.943
13 565 6.30 55.3 0.837
14 852 84.3 63.7 0.033

The use of those values instead of true maximum pit sizes takes into account the stochastic nature of
the pit initiation times. R2 values of the linear fitting functions suggest very good correlation for the
lower temperature and a moderate correlation for the higher temperature. As expected, the steeper slope
corresponds to the higher temperature. It has to be noted that the results do not necessarily imply a linear
growth law. The fitting should be viewed as a confirmation of a positive correlation and emphasize the
possibility estimating the pit sizes by means of data analysis. However, a deduction of a time dependent
growth law is not yet exactly possible and requires a more precise apparatus.

Some reasons can be named for the observed discrepancies in the correlations:

• The fact that T = 105 ◦C is probably very close to the critical temperature where no pits are induced,
might be problematic because the system is very sensitive to slight temperature fluctuations at this
point.

• Because only extreme pit sizes are considered in Gumbel analysis, the probability is very high that
those pits initiated before a measurable, hydrogen-induced pressure rise is detected. This implies
an uncertainty between the measured and real tR. Due to the fairly short overall reaction times,
already small deviations can disturb correlations.

• We defined the end of reaction as the time when the pressure is released from the vessel. However,
because the temperature is still high inside, the reaction is not interrupted immediately which leads
to another inaccuracy in generated data.

Nonetheless, even with those uncertainty sources, the calculated kinetic parameters (i.e. the fitting
slopes in Fig. 12) for respective temperatures can be compared with the extrapolated electrochem-
ical fluxes based on results of Kramer et al..[13] For 105 ◦C, j tot,105 ◦C = 1.48× 10−2 mol m-2 s-1 and

j echem,105 ◦C = 6.44× 10−9 mol m-2 s-1 and for 110 ◦C j tot,110 ◦C = 1.89× 10−1 mol m-2 s-1 and j echem,110 ◦C

= 6.95× 10−9 mol m-2 s-1. The values imply that the chemical fluxes are around seven orders of magni-
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Figure 11: Analysis of obtained Gumbel parameters at different reaction temperatures.
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Figure 12: Plot and linear fit of expected pit radii against the reaction time tR.

tude larger than the electrochemical fluxes at the examined temperatures. Furthermore, the proportion
of j chem to j tot is one order of magnitude higher for 110 ◦C compared to 105 ◦C which supports the
assumption of a significantly higher activation energy for the chemical process.

Although a time correlation to the calculated expected pit sizes is possible with the currently employed
experimental procedures, one should question whether Gumbel analysis alone is sufficient for forecasting
material resilience in the given environment. It is important to note that component failure can occur
not only by perforation by a single pit but also due to a sudden temperature rise and accompanying
autocatalytic increase of reaction kinetics and a switch to uniform corrosion. This was observed in
several experiments when the reaction was not stopped and cooled in time. If the mechanism changes
in that extreme way, predictions based on Gumbel analysis lose their validity. The exact reason fo the
sudden mechanism change will be subject of a future study.
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5 Conclusion

In this work, a data based approach for analysis of localized corrosion of aluminium alloys in water-
free ethanol is presented on the example of AA1050. A possible reaction mechanism for dry alcoholate
corrosion of Al is proposed and reasons for a predominantly chemical driving force are emphasized. On
the example of AA1050, it is suggested to describe statistical uncertainties of the experiments by means of
Weibull analysis of induction times. It allows a rough approximation of component failure times without
having to determine the parameters which are related to pit-initiation process and hardly accessible
experimentally.

Extreme value Gumbel analysis was employed for pit maxima characterization and it was shown that it
is an appropriate model for the temperature-driven ethanolate corrosion by means of modified Anderson-
Darling test and corresponding p-values. A positive correlation was shown for expected maximum pit
sizes and the contribution of a chemical process was highlighted with regard to a necessity of employment
of non-electrochemical methods.

It is expected to obtain more precise results with a smaller reactor in order to estimate the growth law
equations and verify the proposed reaction mechanism.

Acknowledgments: The authors acknowledge the financial support by the Deutsche Forschungsgemein-
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