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Abstract 20 

In this paper, Fluidity-Atmosphere, representative of a three-dimensional (3D) nonhydrostatic Galerkin compressible 21 

atmospheric dynamic framework, is generated to resolve large-scale and small-scale phenomena simultaneously. This 22 

achievement is facilitated by the use of nonhydrostatic equations and the adoption of a flexible 3D dynamically 23 

adaptive mesh where the mesh is denser in areas with higher gradients of variable solutions and relatively sparser in 24 

the rest of the domain while maintaining promising accuracy and reducing computational resource requirements. The 25 

dynamic core is formulated based on anisotropic tetrahedral meshes in both the horizontal and vertical directions. The 26 

performance of the adaptive mesh techniques in Fluidity-Atmosphere is evaluated by simulating the formation and 27 

propagation of a nonhydrostatic mountain wave. The 2D anisotropic adaptive mesh shows that the numerical solution 28 

is in good agreement with the analytic solution. The variation in the horizontal and vertical resolutions has a strong 29 

impact on the smoothness of the results and maintains convergence even at high resolutions. When the simulation is 30 

extended to 3D, Fluidity-Atmosphere shows stable and symmetric results in the benchmark test cases. The flows over 31 

a bell-shaped mountain are resolved quite smoothly. For steep mountains, Fluidity-Atmosphere performs very well, 32 

which shows the potential of using 3D adaptive meshes in atmospheric modeling. Finally, as an alternative cut-cell 33 

mesh in Fluidity-Atmosphere, the anisotropic adaptive mesh coupled with the Galerkin method provides an alternative 34 

accurate representation of terrain-induced flow.  35 

 36 
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1. Introduction 43 

Atmospheric motion involves a wide range of spatial scales, from large-scale flows O(106-107) m down to 44 

parameterized turbulence O(101-102) m (Kühnlein 2011; Zheng et al. 2015). In numerical weather prediction (NWP) 45 

models, the straightforward way to resolve more small-scale phenomena is by using a high-resolution mesh, which 46 

leads to a high computational cost. However, it is often not feasible to use a global uniform high-resolution mesh to 47 

simulate large- and small-scale phenomena simultaneously with limited computational resources. In recent decades, 48 

the adoption of adaptive mesh refinement has solved this bottleneck by locally increasing the mesh resolution in the 49 

key domain of NWP models and leaving a coarse resolution for the rest of the model. Adaptive mesh refinement can 50 

be distinguished into static and dynamic refinement (Marras et al. 2016). For static mesh refinement, resolution 51 

adjustment is always achieved by hierarchical mesh nesting, which has been widely used in many NWP models: WRF 52 

(Skamarock et al. 2007), GRAPES (Yang et al. 2008), COSMO (Steppeler et al. 2002; Doms and Baldauf 2018), 53 

NAM (Janjic 2003), RAMS (Pielke et al. 1992), etc. For dynamic mesh refinement, the mesh is adjusted in time and 54 

space, thereby enabling multiscale processes to be resolved and the features of flows to be captured as time evolves. 55 

Skamarock et al. (1989) and Skamarock and Klemp (1993) first applied adaptive meshes in atmospheric sciences. 56 

Bacon et al. (1999) developed the first operational adaptive model, the operational multiscale environment model with 57 

grid adaptivity (OMEGA), and simulated hurricane tracks with a horizontal adaptive mesh. Iselin (2002) utilized a 58 

stretched adaptive mesh to address 1D and 2D advection problems. St-Cyr et al. (2008) compared two shallow-water 59 

models with quad-tree adaptive mesh refinement and demonstrated that the adaptive mesh was able to track features 60 

of interest without visible distortion at the mesh interfaces. Weller et al. (2016) introduced a new r-adaptive mesh 61 

using optimal transport and the numerical solution of a Monge-Ampère type equation. Furthermore, the adaptive mesh 62 

has been a strong competitor in resolving multiscale dynamic and chemical processes (Garcia-Menendez and Odman 63 

2011; Karamchandani et al. 2011). Odman and Khan (2002) and Odman et al. (2004) introduced adaptive mesh 64 

techniques into an air quality model for an ozone case. Zheng et al. (2015) and Zheng et al. (2020) used the anisotropic 65 

adaptive mesh technique to accurately represent the air pollutant transport process and chemical reactions. With the 66 

rise of grid-independent Galerkin methods and finite volumes (Ford et al. 2004; Nair et al. 2005; Ahmad et al. 2006; 67 

Giraldo and Restelli 2008; Giraldo and Warburton 2008; Li et al. 2008; Jablonowski et al. 2009), a number of research 68 

studies on dynamic mesh adaptation combined with element-based Galerkin methods have been performed in 69 

meteorology applications (Chen et al. 2011; Müller et al. 2013; Yelash et al. 2014; Kopera and Giraldo 2014). Marras 70 
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et al. (2016) pointed out that element-based Galerkin methods might perform well in next-generation atmospheric and 71 

climate models competing with finite difference and spectral transform methods. Savre et al. (2016) first introduced 72 

the anisotropic adaptive mesh technique into atmospheric modeling in both horizontal and vertical directions and 73 

evaluated it with 2D idealized test cases. 74 

In this study, we develop a new 3D dynamically adaptive atmospheric model (Fluidity-Atmosphere) based 75 

on the dynamic framework of Fluidity, a computational fluid dynamic (CFD) model developed by the Applied 76 

Modeling and Computation Group (AMCG), Imperial College London (ICL) (Pain et al. 2001, 2005; Piggott et al. 77 

2009). Its accuracy and conservation properties have been validated by a series of idealized simulations using a 78 

uniform mesh, and the computational cost has been decreased by mesh adaptivity in rising bubble, density current and 79 

interacting warm and cold bubble tests (Pain et al. 2001, 2005; Piggott et al. 2009; Savre et al. 2016; Zheng et al. 80 

2015; 2020). Fluidity-Atmosphere applies dynamically tetrahedral adaptive meshes in 3D space and time so that 81 

regions of steep topography, high dynamic activity or specific interest can be modeled with high horizontal and vertical 82 

resolutions. The tetrahedral (triangular in 2D) mesh can be adapted in an anisotropic way so that the mesh refinement 83 

works on a targeted domain with preferential research requirements (for example, strong convections or local turbulent 84 

flows). The adaptive mesh is combined with a range of control volumes and finite element discretization methods to 85 

optimally represent flows (e.g., tracers and temperature). With mesh adaptivity, the mass is conserved by a supermesh 86 

interpolation strategy (Farrell et al. 2009). 87 

In atmospheric modeling, the computational mesh plays an important role in topographical representation, 88 

which is vital for accurately simulating mountain waves and the pressure gradient force. Currently, terrain-following 89 

coordinates (Phillips 1957; Gal-Chen and Somerville 1975) are widely used in many NWP models for topographical 90 

representation. However, in the vicinity of steep mountains, the nonorthogonality of terrain-following coordinates 91 

leads to spurious winds and significant pressure gradient force errors (Sundqvist 1976; Good et al. 2014; Nishikawa 92 

and Satoh 2016; Li et al. 2016a). This can be improved, for example, by topographical smoothing with height (Schär 93 

et al. 2002; Leuenberger et al. 2010; Klemp 2011; Li et al. 2014) and improvements in the accuracy of schemes for 94 

computing the pressure gradient force (Zängl 2012; Li et al. 2012; Weller and Shahrokhi 2014; Li et al. 2016b). Even 95 

so, errors are inevitably introduced on ground with unmodified steep terrain in a high-resolution model (Shaw and 96 

Weller 2016). An alternative topographical representation is the cut-cell method (Steppeler et al. 2002; Yamazaki and 97 

Satomura 2010; Lock et al. 2012; Good et al. 2014). Cut cells and the Galerkin method have in common that the 98 
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representation of the mountains is achieved by adapting the computational mesh rather than by coordinate 99 

transformation. The thin-wall approximation (Steppeler et al. 2002) and grid emerging technique (Yamazaki and 100 

Satomura 2010) improved computational efficiency and numerical stability. Steppeler et al. (2006, 2011, 2013, 2019) 101 

demonstrated improvements in the prediction of precipitation and potential temperature by the cut-cell method 102 

compared with the terrain-following method. Lock et al. (2012) extended a 3D cut-cell approach for steep mountains 103 

using piecewise bilinear surfaces. Gallus and Klemp (2000) found that the step-mountain method, representing terrain 104 

by a piecewise constant function, can lead to a lack of convergence and artificial flow separation, which cannot even 105 

be repaired by a very high vertical resolution. It turned out that representing a mountain by a continuous piecewise 106 

linear spline avoids the mentioned difficulties of the step-mountain approach. In Fluidity-Atmosphere, the terrain is 107 

embedded within a tetrahedral (triangular in 2D) mesh, similar to the cut-cell method. By specifying the mesh aspect 108 

ratio and gradation (smoothness), the flexible mesh adaptivity technique avoids the use of small-size cut cells, thus 109 

allowing a large time-step size while maintaining numerical stability. 110 

The performance of Fluidity, including the approximation accuracy, numerical stability, mesh convergence 111 

and conservation properties, has been demonstrated by Pain et al. (2001), (2005); Farrell et al. (2009); Piggott et al. 112 

(2009); Savre et al. (2016); Li et al. (2018); and Zheng et al. (2015), (2020). One important unanswered question is 113 

whether Fluidity-Atmosphere can accurately represent the underlying terrain and simulate mountain waves, which 114 

have a dominant effect on atmospheric motions as the horizontal resolution approaches or exceeds O(101) km (Gallus 115 

and Klemp 2000). We conduct a sequence of 2D nonhydrostatic mountain wave tests to evaluate the performance of 116 

Fluidity-Atmosphere and then extend them to 3D. In Sect. 2, we introduce the characteristics, governing equations 117 

and numerical schemes of Fluidity-Atmosphere. In Sect. 3, we provide the theory of anisotropic adaptive mesh 118 

techniques in Fluidity-Atmosphere. In Sect. 4, the performance of adaptive unstructured meshes is tested through a 119 

series of 2D and 3D experiments. Sect. 5 evaluates the ability of Fluidity-Atmosphere to accurately represent the 120 

underlying terrain. Finally, the conclusions and discussion are presented in Sect. 6. 121 

 122 
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2. Description of the Fluidity Atmosphere: A Dynamically Adaptive Atmospheric Dynamic 123 

Framework  124 

In this work, the dynamic framework of Fluidity-Atmosphere is based on a set of equations within Fluidity 125 

(developed by AMCG, ICL), consisting of the continuity equation, nonhydrostatic momentum equation, and energy 126 

budget equation. Fluidity has the following features: 127 

 Anisotropic tetrahedral adaptive meshes in 3D space and time such that regions of steep topography, 128 

high dynamic activity or specific interest can be modeled with high horizontal and vertical resolutions; 129 

 A range of control volumes and continuous and discontinuous finite element discretization methods; 130 

 Finite element types (PNPM, where P is a polynomial and N and M are the degrees of the polynomials 131 

for velocity and pressure, respectively) designed to optimally represent flows (e.g., tracers and 132 

temperature); 133 

 Conservative mesh-to-mesh interpolation; 134 

 Parallel computing. 135 

 136 

2.1 Governing Equations 137 

For meteorological applications, the continuity equation, nonhydrostatic momentum equation, energy budget 138 

equation, and atmospheric state equations are taken into account as follows: 139 

 ( )u
t
ρ ρ∂
= −∇⋅

∂


 , (1) 140 

 
1

u
u u u p g f k u D
t ρ

∂
= − ⋅∇ − ∇ − − × +

∂



     

 , (2) 141 

 ( ) 0u w S D
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
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where i j k
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

  
, t represents the time, ρ  is the dry density, ( ) ( )1 2 3, , , ,T Tu u v w u u u= =


 is the 144 

velocity vector, p is the pressure ( ( ) ( ) ( )0, , ' , ,p x y z p z p x y z= + , where the subscript '0' represents the basic 145 

state of the corresponding variable with respect to z and p' is the perturbation of pressure), g


 is the acceleration of 146 

gravity, f represents the inertial Coriolis force, 0 0ρθ ρ θΘ = −  is the perturbation of potential temperature, 147 

1.4p

v

c
c

γ = =  is the ratio of the heat capacities for dry air, 1 1281dR J kg K− −= ⋅ ⋅  is the gas constant for dry air, 148 

SΘ  refers to the source term of the energy budget equation and uD 


 and DΘ  are the subgrid turbulent mixing terms, 149 

defined as: 150 

 
i

ji
u M

j j i

uuD K
x x x

  ∂∂∂
= +   ∂ ∂ ∂   

 , (5) 151 

 H
j j

D K
x xΘ

 ∂ ∂Θ
=   ∂ ∂ 

 , (6) 152 

where jx  represents the x-, y- and z-axes (j = 1, 2, 3), HK  is the diffusivity and MK  is the viscosity.  153 

2.2 Discretization of the Governing Equations 154 

Fluidity-Atmosphere employs the mixed continuous/discontinuous Galerkin method for spatial 155 

discretization, and a time-stepping λ  scheme is adopted for temporal discretization (here, the Crank-Nicolson scheme 156 

with 0.5λ = ). For details of the characteristics and numerical schemes in Fluidity-Atmosphere, see AMCG (2014). 157 

Here, we outline the discretization of the equations in Fluidity-Atmosphere. In a finite-element expansion, 158 

the velocity components , ,u v w  and pressure are represented as 159 

 ( ) ( ), ,
1

i i j i j
j

u X N X u
ℵ

=

=∑  , (7) 160 

 ( ) ( )
1

j j
j

p X M X p
ℵ

=

=∑  , (8) 161 
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and the perturbation of potential temperature Θ  is: 162 

 ( ) ( ),
1

j j
j

X N X
ℵ

Θ
=

Θ = Θ∑  , (9) 163 

where { }1,2,...,j∈ ℵ , X is the location of a node; N, M and NΘ  are basis functions for the velocity, pressure and 164 

perturbation of potential temperature, respectively; , , ,i j j ju p Θ  with the subscript 'j' represent the values of the 165 

corresponding variables at node j; and ℵ  is the total number of nodes. Note that in this study, we choose to make the 166 

continuity equation test functions the same as the pressure basis functions. 167 

2.2.1 Discretized Momentum Equations 168 

By applying finite elements, the momentum equations are tested with the velocity basis functions 169 

( ), ,i u v wN N N N=


. By applying the λ  time-stepping method and taking Eqs. (7) ~ (8) into account, the discrete 170 

momentum equations in space can be written in matrix form: 171 

 ( ) ( )1 1n n nn n n s
t

λ λ λ+ + ++ +− + + + + =
∆

U U UU
U

M U U A U U Cp B CorU  , (10) 172 

where UM  ( , i jijM N N dρ
Ω

= ⋅ Ω∫U

 
, and Ω  represents the computational domain) denotes the velocity mass 173 

matrix; ( )n λ+ UA U  ( ( )i jijA N u N dρ
Ω

= ⋅ ⋅∇ Ω∫
  

) is the advection matrix in the momentum equation; C  174 

( iij jC N M d
Ω

= ⋅∇ Ω∫


) is the pressure gradient matrix; B  ( iiB N gdρ
Ω

= ⋅ Ω∫
 

) is the gravity matrix; Cor  175 

( ( )2i jijCor N N dρ
Ω

= ⋅ × Ω∫ Ω
  

) is the Coriolis force matrix; ( )1 2, ,...,
T

u u uℵ=U
  

 and 176 

( )1 2, ,..., Tp p pℵ=p  are vectors that contain the solutions of the velocity components and pressure over the domain 177 

Ω , respectively; sU  is the source term including the diffusion terms and boundary conditions; and 178 

( )1 1n n nλ λ λ+ += + −U
U UU U U  (where 0 1λ≤ ≤U ). 179 

2.2.2 Discretized Continuity Equation and Pressure Correction 180 
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By multiplying the continuity equation with the pressure basis functions Mi and integrating it over the domain, 181 

the discrete continuity equations in space can be written in matrix form:  182 

 
n

n
bq

tρ
∆

+ =
∆
ρM LU M  , (11) 183 

where ( )1 2, ,..., Tρ ρ ρℵ=ρ ; , ,ij iM N dρ ρΩ
= Ω∫ ;  ( ), ,i iij j jL N N d N N ndρ ρρ ρ

Ω ∂Ω
= ⋅∇ Ω− ⋅ Ω∫ ∫

  
; 184 

, , ib ij jM N N ndρρ
∂Ω

= ⋅ Ω∫
 

 and q u n= ⋅
 

, where ∂Ω  represents the boundary over Ω  such that the boundary 185 

conditions are applied and the unit vector n


 is assumed to be the outward facing normal vector to the domain Ω . For 186 

a given initial pressure or the pressure from the previous time level, an intermediate velocity 1
*
n+u  can first be solved 187 

using Eq. (10). By taking into account Eqs. (10) and (11), the pressure is then corrected using: 188 

 
( )

1 +1
1 1 *

2=
n n

n bq
t tρ

+
− + − ∆

∆ +
∆ ∆

U
Lu M ρLM C p M  . (12) 189 

The updated pressure is substituted into Eq. (10), and the velocity is recalculated. The combination of determining the 190 

momentum and correcting the pressure has to be repeated during the nonlinear iteration procedure until the solutions 191 

satisfy both the continuity and momentum equations. 192 

2.2.3 Discretization of the Energy Budget Equations 193 

The discretized form of Eq. (3) at time level n+1 using finite elements and the λ -method is written in a 194 

general way as: 195 

 ( )
1n n

n n

t
λ λ

+
+ +−

+ =
∆

F F
F F

F FM A U F s  , (13) 196 

where ( )1 2, ,..., TF F Fℵ=F , F = Θ , , , ,ij F i F jM N N d
∂Ω

= Ω∫F , Fs  is the source term, the diffusion terms and 197 

the boundary conditions, and [ ]0,1λ ∈F , where the term n λ+ FF  is given by 198 

 ( )1 1n n nλ λ λ+ += + −F
F FF F F  . (14) 199 
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In Fluidity-Atmosphere, the time-marching algorithm employed uses a nonlinear iteration scheme (AMCG 200 

2014). The time loop is repeated either a fixed number of times or until convergence is achieved. Fig. 1 shows the 201 

sequence of steps in the iteration loop. 202 

 203 

 204 

Fig. 1 Time loop of Fluidity-Atmosphere. Note that the variables with wavy lines represent the tentative 205 

quantities during the nonlinear iterations for the variables at the next timestep. At the final nonlinear iteration, 206 

1 1n nc c+ +=  . 207 

 208 
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3. Introduction of Anisotropic Mesh Adaptive Techniques in Fluidity-Atmosphere 209 

In traditional atmospheric models, adaptive mesh refinement (a locally nested static mesh method) is often 210 

used to refine the mesh in local regions. In this work, we introduce an optimization-based adaptive mesh technique 211 

(Pain et al. 2001) for atmospheric modeling in both horizontal and vertical directions. Using the optimization-based 212 

adaptive technique, the anisotropic unstructured mesh can be dynamically adapted (in time and space) to resolve 213 

multiscale flow features as the flow evolves and can capture the details of flows in all three directions (Pain et al. 214 

2001, 2005; Piggott et al. 2009). The mesh adaptivity in Fluidity-Atmosphere is achieved in four steps: 215 

(i) Step 1: Create a one-to-one mapping between the tetrahedral mesh elements { }e  and the Riemann metric 216 

tensor M . 217 

(ii) Step 2: Visit all the elements in turn to gauge the mesh quality with the mesh-quality function ℑ . 218 

(iii) Step 3: Apply the optimization operations in the vicinity of the meshes to improve the mesh quality. The 219 

operations include edge collapse, edge splitting, face-to-edge and edge-to-face swapping, edge swapping and 220 

node movement. 221 

(iv) Step 4: Interpolate all the information of the variables at the original meshes into the new meshes after 222 

mesh adaptivity. 223 

In Step 1, the Riemann metric tensor used to guide the adaptive meshing algorithm can be defined as 224 

 
γ
ε

=M H  , (15) 225 

where ε  is the required level of error defined by users, γ  is an O(1) scalar constant (here, we use 1γ = ) and 226 

T f= ∇ ∇H  is the Hessian matrix of the state field f that we seek for optimization. The Hessian matrix can be 227 

decomposed as 228 

 T= H H HH V S V  , (16) 229 

where the matrices HV  and ( )idiag λ= H
HS  contain the eigenvectors ie  and eigenvalues iλ

H  of the Hessian 230 

matrix H , respectively. Then, the operator   ⋅  for H  is defined as: 231 
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 ( ) T
idiag λ= H

H HH V V  . (17) 232 

To represent small-scale dynamics, a relative error metric formulation is utilized: 233 

 ( )minmax ,f
γ
σ σ

=
⋅
H

M  , (18) 234 

where f is the field under consideration, σ  is now a relative tolerance, and minσ  is the minimum tolerance used to 235 

ensure that the denominator never becomes zero. To further control the quality of mesh adaptivity, we can impose 236 

some suitable tolerances on the interpolation errors and set restrictions, for example, the minimum and maximum 237 

element sizes and aspect ratio, on the mesh. It is also very useful to specify heterogeneous, anisotropic minimum and 238 

maximum element sizes for the adaptive mesh. 239 

In Step 2, the mesh quality function is defined as: 240 

 ( ) ( ) ( )2 2

1 1

1
2

e

p
p pp

e l e
e e l

qα
ℵ ℵ

= = ∈

 
ℑ = ℑ = + 

 
∑ ∑ ∑



 , (19) 241 

where p is the index of the norm used, l is the edge of element e, lα is a variable used to gauge the deviation of the 242 

mesh size compared with a regular tetrahedron, and eq  is a quantity used to evaluate the deviation of the mesh shape 243 

compared with a regular tetrahedron with respect to the metric tensor M . 244 

In Step 3, the operations of mesh optimization will visit every element in turn and obtain the new 245 

computational mesh, then gauge the mesh quality. To determine whether mesh adaptation is executed, we list the 246 

criteria for grid refinement: 247 

 { } { } { }''
max max ' ,maxe e ee e e εκℑ − ℑ ≤ − ℑ > ℑ  , (20) 248 

 { } { } { } { } { }' '' '

1 1max max ' 0, max max ' ,max
'e e e e ee e e e e εκℑ − ℑ ≤ ℑ − ℑ ≤ − ℑ > ℑ

ℵ ℵ
 , (21) 249 
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where eℑ  and ''eℑ  are the original and newly generated mesh-quality functions, εℑ is a certain threshold value 250 

(here, we use 0.15), and κ  is a controlling parameter. If either Eq. (20) or Eq. (21) is satisfied, mesh adaptation will 251 

be implemented. Otherwise, the mesh returns to the previous status. 252 

In Step 4, a mass-conserving interpolation approach, the Galerkin projection (Farrell et al. 2009; Savre et al. 253 

2016), is utilized to interpolate solutions from the previous mesh to the newly generated adaptive mesh, which is 254 

implemented by a supermeshing algorithm. For the details of the grid adaptivity measurements, we refer to AMCG 255 

(2014). 256 

 257 

4. Idealized Mountain Wave Test Cases 258 

In this section, the performance of Fluidity-Atmosphere using anisotropic adaptive unstructured meshes is 259 

evaluated with three test scenarios: 260 

(i) nonhydrostatic flow in a stable stratified atmosphere around a 2D bell-shaped mountain (Lock et al. 2012); 261 

(ii) sensitivity analysis of the mountain wave results with respect to different adaptive mesh sizes in the 262 

horizontal and vertical directions; 263 

(iii) a sequence of experiments simulating nonhydrostatic flow over the 3D steep bell-shaped hill specified in 264 

Lock et al. (2012); 265 

Here, the dynamically adaptive mesh technique ensures computational effort in resolving the dynamic flow process 266 

over a wide range of spatial scales. 267 

 268 

4.1 2D Adaptive Nonhydrostatic Mountain Wave 269 

In this test, we use the benchmark 2D test of Lock et al. (2012) for flow over a bell-shaped mountain with 270 

steady boundary conditions to form a stable upward-propagating mountain wave in a stratified atmosphere.  271 

The computational domain is 60 km wide in the horizontal direction and 16 km deep in the vertical direction, 272 

with a simulation time of 50000 s. The timestep is set to 5.0 s, and mesh adaptation is performed every 10 timesteps. 273 

The anisotropic gradation and maximum aspect ratio are restricted to 2 and 10, respectively. Before the actual 274 

simulation starts, the mesh is adapted twice to capture the basic information of the initial fields. The resolution of the 275 

adaptive meshes varies from 0.2 km to 2 km with respect to the solution of the state variables (the velocity vector here), 276 
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while the absolute interpolation error is set to 0.1 in the horizontal direction and 0.02 in the vertical direction. For 277 

comparison purposes, the control run is conducted in a fixed mesh with horizontal and vertical resolutions of dx = dz 278 

= 0.2 km (Fig. 4). 279 

For spatial discretization, continuous Galerkin (CG) and control volume (CV) methods are applied. The basis 280 

functions N, M and NΘ  used to approximate the velocity, pressure and perturbation of the potential temperature are 281 

first order. For the CV method, the face value is obtained by first-order upwind discretization or alternatively by using 282 

finite element interpolation (hereafter referred to as CV1 and CV2, respectively, AMCG, 2014). For temporal 283 

discretization, we utilize the semi-implicit Crank-Nicolson scheme with 0.5λ = . 284 

The underlying 2D bell-shaped mountain is defined as: 285 

 ( ) 2

2

0

1 x
a

hh x =
+

 , (22) 286 

where 0 400h m=  is the maximum height of the mountain and the half-width of the mountain is 1000a m= . We 287 

use a constant Brunt-Väisälä frequency of 10.01N s−=  to define the stratified background, and the bottom potential 288 

temperature is 0 293.15Kθ = . The initial velocity of the flow is ( )10,0 /Tu m s=


. We apply no-flux boundary 289 

conditions along the bottom surface. Open lateral boundary conditions are used at the inflow and outflow boundaries. 290 

Since 1Na
u

= , this test belongs to the nonhydrostatic range based on the analysis in Gallus and Klemp (2000). 291 

To prevent the oscillation of the waves reflected at the top and the lateral boundaries, an absorbing layer is 292 

added on the top of the model, and strong diffusion is included at the lateral boundaries. In the outermost 6sz km=  293 

at the top of the model, a damping coefficient α  is set after the prediction at the n-th time step: 294 

 max 1 cos , for  ,
2

0,                                          otherwise.

s
s top

top s

z z z z z
z z

πα
α

   −
− − < <   = −    



 , (23) 295 

where 16topz km=  such that the damped model solutions φ  (including , , ,u v w Θ ) at the n-th time step become: 296 
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 ( )0 0
0n n nφ φ α φ φ= + −  , (24) 297 

where 0φ  is the initial state of the variable φ  and 0
nφ  is the variable after the n-th time step without damping. Here, 298 

max 1α = . 299 

For stability, we define two continuous diffusions LK  and VK , where LK  is the diffusion for the lateral 300 

boundaries: 301 

 

max

max

,               for ,

, for ,

0,                             otherwise,

L out b

in
L L in out

out in

K x x x
x xK K x x x

x x

 < <
 −= < < −


  (25) 302 

and VK  is the diffusion in the vertical direction: 303 

 

max

max min

,                          for ,

,       for ,

0,                                       otherwise,

V bot a

b
V V V a b

b a

K z z z
z zK K K z z z
z z

 < <
 −= + < < −


  (26) 304 

where max 250000 /HK m s= ; inx  and outx  are the innermost and outermost positions for using diffusion, in which 305 

the diffusion ranges linearly from 0 to max
HK ; and bx  is the position of the boundaries. Here, 306 

[ ] [ ], , 10,6,0in out bx x x km=  at the inflow boundary and [ ]50,54,60 km  at the outflow boundary. 307 

max 2500 /VK m s=  and min 2100 /VK m s= ; 3az km=  and 4bz km=  are the starting and ending boundaries for 308 

the linear range of VK  in the vertical direction from min
VK  to max

VK , and 0botz = . Thus, the diffusion is defined as: 309 

 L VK K K= +  . (27) 310 

 311 
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 312 

Fig. 2 Vertical velocity solution for the mountain wave simulation over a 2D bell-shaped terrain with a contour 313 

interval of 0.25 m/s. (a): The analytic solution reproduced from Gallus and Klemp (2000); (b) and (c): the solutions 314 

of the CV1 method; (d) and (e): the solutions of the CV2 method; (f) and (g): the solutions of the CG method. (b), 315 

(d) and (f) are for a fixed mesh, while (c), (e) and (g) are for an adaptive mesh.  316 

 317 

Fig. 2 illustrates the contours of the vertical velocity until a steady-state velocity is achieved by (a) linear 318 

theory (Gallus and Klemp 2000); (b), (e) CV1; (c), (f) CV2; and (d), (g) CG. The analytic solution is obtained using 319 

Eq. (4) with linear theory for a flow past the step mountain of Gallus and Klemp (2000). The left and right columns 320 

are the results for fixed and adaptive meshes, respectively. All the flow patterns using Fluidity-Atmosphere show good 321 
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agreement with the analytic solution, and the contours of the vertical velocity are stacked vertically above the terrain. 322 

A comparison between the results for the fixed mesh and the adaptive mesh reveals that the adaptive mesh is able to 323 

simulate mountain waves with a similar quality as the fixed mesh. The deviations from the analytic solution with 324 

respect to the magnitude of the vertical velocity among CV1, CV2 and CG exhibit a declining trend. The CV1 method 325 

(Fig. 2b and 2c) shows a smaller velocity farther from the peak of the mountain because the first-order upwind scheme 326 

is less accurate. The pattern and center position of the wave in CV2 (Fig. 2d and 2e) and CG (Fig. 2f and 2g) are 327 

comparable to those of the analytic solution (Fig. 2a). Moreover, the results for the fixed mesh exhibit smooth vertical 328 

velocity contours, while a few numerical artifacts can be detected at the periphery of the contours (e.g., the outermost 329 

contour) for all the adaptive-mesh cases. This may be seen as a small error arising from adaptivity. 330 

  331 
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 332 

Fig. 3 Horizontal velocity solution and the corresponding adaptive mesh for the mountain wave simulation over a 333 

2D bell-shaped terrain with a contour interval of 0.2 m/s. The left column contains all the results for the fixed mesh, 334 

while the right column shows those of the adaptive mesh. (a) and (b): The solutions of the CV1 method; (c) and (d): 335 

the solutions of the CV2 method; (e) and (f): the solutions of the CG method. 336 

 337 

Fig. 3 shows the horizontal velocity contours. Small artificial noise in the vicinity of the mountain at a height 338 

of almost 1 km occurs with the adaptive mesh cases. The spurious oscillation on the entire bottom boundary is 339 

incorrectly captured by the adaptive meshes and is thus artificially amplified in the vicinity of the mountain. This can 340 

be observed correspondingly for the adaptive mesh snapshot in Fig. 4. 341 

 342 
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 343 

Fig. 4 Computational meshes for the mountain wave simulation over a 2D bell-shaped terrain. (a): Terrain-following 344 

triangular fixed meshes with dx = dz = 200 m; (b), (c) and (d): anisotropic adaptive meshes with the CG, CV1 and 345 

CV2 methods. The maximum and minimum lengths are 2000 m and 200 m. (e) and (f) show the magnified views of 346 

(a) and (b) marked by the blue rectangular areas. 347 

 348 

Compared with the CG results, the CV1 and CV2 methods possess an intrinsic viscosity (diffusion). Although 349 

an increase in max
VK  makes the numerical noise disappear, it is accompanied by a reduction in the magnitude of the 350 

velocity. Therefore, in order to eliminate the noise around the peak of the mountain and maintain the magnitude of the 351 

velocity, partial node locking at the bottom boundary will be conducted in Sect. 5. 352 

  353 
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Table 1 The number of cells and points used for the fixed mesh and the adaptive mesh in Sect. 4.1. 354 

Number of Cells/Points Spatial Discretization Fixed Mesh 
Adaptive Mesh 

Start (t = 0 s) Steady (t = 50000 s) 

Cells 

CV1 48000 1447 6064 

CV2 48000 1447 8914 

CG 48000 1447 9596 

Points 

CV1 24381 644 3132 

CV2 24381 644 4560 

CG 24381 644 4901 

 355 

The relationship between the mesh refinement and computational costs for the fixed mesh and the adaptive 356 

mesh was investigated. The meshes for the simulation are shown in Fig. 4, and the number of cells and points and the 357 

corresponding ratios of the adaptive mesh and the fixed mesh are provided in Tabs. 1 ~ 2. The fixed mesh is composed 358 

of triangular meshes based on terrain-following quadrilaterals that are cut into two triangles by one diagonal line. The 359 

numbers of cells and points in the fixed mesh are constant values of 48000 and 24381, respectively. In contrast, the 360 

adaptive mesh changes every 10th timestep, so we present the numbers at the start time and at the time when the steady 361 

solution is reached. We note that the mesh is adapted with respect to the velocity such that the entire domain is filled 362 

with coarse meshes before the activation of the mountain wave. Then, at the steady state, the wave continuously 363 

propagates downstream and upward from the peak of the mountain, leading to a high-resolution dense mesh 364 

aggregated on the entire leeward side of the mountain. Due to the decay of the velocity magnitude with height, the 365 

mesh becomes coarser than the mesh in the vicinity of the mountain, as shown in Figs. 4b ~ 4d. The mesh adaptivity 366 

therefore reduces the number of cells and points to 6064 ~ 9596 and 3132 ~ 4901. The corresponding ratio of the 367 

adaptive mesh and the fixed mesh becomes 12.7% for CV1, 18.6% for CV2 and 20% for CG. The ratio of runtimes 368 

between the adaptive mesh and the fixed mesh is proportional to the ratio of the number of nodes and cells. Therefore, 369 

to achieve the desired accuracy, the adaptive mesh requires fewer computational nodes and a shorter runtime through 370 

the whole domain, thus improving the computational efficiency compared to the fixed mesh. Moreover, for the 371 

adaptive mesh, the difference in accuracy in the vertical velocity among CV1, CV2 and CG can be reflected by the 372 

difference in the number of cells and points in these test cases. In other words, the greater the number of cells and 373 

points, the higher the accuracy achieved. 374 

 375 
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Table 2 Three ratios of the adaptive mesh and the fixed mesh at t = 50000 s from the six mountain wave tests presented 376 

in Sect. 4.1. 377 

Ratio CV1 CV2 CG 

Number of Cells 12.63% 18.57% 19.99% 

Number of Points 12.85% 18.70% 20.10% 

Runtime 13.11% 18.28% 23.56% 

 378 

4.2 2D Adaptive Nonhydrostatic Mountain Wave with Different Resolutions and the Relation 379 

to the Cut Cells 380 

Our study now focuses on the resolution dependence of mountain wave modeling using adaptive mesh 381 

techniques. In this study, the simulations of the mountain wave are set up as in Sect. 4.1 except for the setting of the 382 

adaptive meshes. Since the performance of the CG method is superior to that of the CV methods, CG will be utilized 383 

in the following tests. To evaluate the impact of the horizontal (vertical) resolution, we keep the minimum vertical 384 

(horizontal) mesh size at 200 m, while the minimum horizontal (vertical) mesh size is 1600, 800, 400, 200, 100 and 385 

50 m. 386 

The results with variations in the horizontal mesh size are shown in Fig. 5. These results (the accuracy and 387 

location of the wave contours) agree well with the analytic solution except for those for the coarse mesh scheme. 388 

According to the increase in the horizontal mesh resolution, the amplitudes of the vertical velocity are increased 389 

somewhat positively at the peak of the mountain, and the contour of the vertical velocity becomes smooth, although 390 

there is slight noise on the bottom boundary. However, when the mesh size is less than 200 m, the effect of increasing 391 

the horizontal resolution is not obvious in terms of smoothness, and the continuity of the solution is different from the 392 

results in Gallus and Klemp (2000) (Figs. 5e and 5f). This is because Fluidity-Atmosphere enables a piecewise 393 

continuous mountain representation to achieve convergence, especially for high horizontal resolution. 394 

In detail, the scheme in Fluidity-Atmosphere is very similar to the cut-cell formulation for the representation 395 

of mountains, which is achieved by mesh adaptation instead of coordinate transformation. In fact, for the fixed mesh 396 

study, the scheme in Fluidity-Atmosphere is a cut-cell formulation (using an unstructured mesh). For the unstructured 397 

adaptive mesh used here, the problem of the appearance of very small cells, typical for cut cells, is not present. As a 398 

mountain is represented here by piecewise linear spline results, we are free from the problems pointed out by Gallus 399 



 

 22 / 40 
 

and Klemp (2000) for mountain representations by piecewise constant splines. This result is in full agreement with 400 

Steppeler et al. (2002), who concluded that the problems for Gallus and Klemp (2000) disappear when the bottom 401 

boundary is changed to a piecewise linear mountain. Furthermore, cut cells allow the presence of steep mountains, 402 

which will be addressed in Sect. 4.3. 403 

 404 

 405 

Fig. 5 Vertical velocity solution of the mountain wave simulation over a 2D bell-shaped terrain with different 406 

horizontal mesh sizes. The maximum mesh size in both the horizontal and vertical directions is 2000 m, and the 407 

minimum vertical mesh size is 200 m. The minimum horizontal mesh sizes are (a) 1600 m, (b) 800 m, (c) 400 m, (d) 408 

200 m, (e) 100 m and (f) 50 m. The contour interval is 0.25 m/s. 409 

 410 
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With the increase in vertical resolution shown in Fig. 6, the vertical velocity contour is near the analytic 411 

solution. Similar to the result in Fig. 5a, the coarse-resolution simulation result (dz = 1600 m in Fig. 6a) exhibits very 412 

strong vertical oscillations, especially for the area over the peak of the mountain. The error can be reduced by 413 

increasing the vertical resolution (Figs. 6b~6d). When further increasing the vertical resolution to dz = 50 m from 200 414 

m, both the smoothness and the magnitude of the contours are always preserved (Figs. 6d ~ 6f). Combined with the 415 

results in Figs. 5d ~ 5f, dx = dz = 200 m should be a wise choice for Fluidity-Atmosphere in the 2D mountain-wave 416 

simulation. We note that the maximum height of the mountain is 400 m, so the increase of the vertical resolution has 417 

a strong impact on the representation of the terrain when dz < 400 m. Because it is different from the step-mountain 418 

coordinate, the adaptive mesh in Fluidity-Atmosphere makes the underlying terrain smoother. Therefore, judging from 419 

the contours of the velocity contour, Fluidity-Atmosphere maintains its characteristics at dz = 200 m. 420 

  421 



 

 24 / 40 
 

 422 

Fig. 6 Vertical velocity solution of the mountain wave simulation over a 2D bell-shaped terrain with different 423 

vertical mesh sizes. The maximum mesh size in both the horizontal and vertical directions is 2000 m, and the 424 

minimum horizontal mesh size is 200 m. The minimum vertical mesh sizes are (a) 1600 m, (b) 800 m, (c) 400 m, (d) 425 

200 m, (e) 100 m and (f) 50 m. The contour interval is 0.25 m/s. 426 

 427 

4.3 3D Adaptive Nonhydrostatic Mountain Wave 428 

To demonstrate the accuracy and stability of 3D Fluidity-Atmosphere, we extend the benchmark test of Lock 429 

et al. (2012) to 3D. The computational domain is 60 km wide in both horizontal directions and 16 km deep in the 430 

vertical direction with a simulation time of 15000 s. The resolution of the adaptive meshes varies from 0.125 km to 10 431 

km. Mesh adaptation is performed every 5 timesteps. All other parameters related to mesh adaptivity are kept the same 432 

as those in Sect. 4.1.  433 

The underlying 3D bell-shaped mountain is defined as: 434 
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hh x y
+

=
+

 , (22) 435 

where 0 400h m=  is the maximum height of the mountain and the half-width of the mountain is 1000a m= . The 436 

stratified background state is defined by 10.01N s−= , and the potential temperature at the bottom surface is 437 

0 293.15Kθ = . The initial velocity of the flow is ( )10,0,0 /Tu m s=


. To prevent the oscillation of the waves 438 

reflected at the top and lateral boundaries, the treatments for the top and lateral boundaries of the model used in Sect. 439 

4.1 are also applied here. 440 

The stable and smooth solution is shown in Fig. 7. In Fig. 7a, the mountain wave propagates upward from 441 

the peak of the mountain, and its strength decays with height. In the horizontal x-y slice at z = 2 km (Fig. 7b), the 442 

contour of the vertical velocity is very smooth and symmetric. The same symmetric distinguishing pattern can be seen 443 

in the vertical cross-section at x = 32 km downstream of the mountain (Fig. 7c), although slight noise appears at 444 

approximately z = 1 km. In the horizontal slice at z = 800 m (Fig. 7d), a little noise appears in the outermost layer of 445 

the contour. 446 

 447 
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 448 

Fig. 7 Contours of the vertical velocity for the mountain wave simulation over a 3D bell-shaped terrain. (a) Vertical 449 

cross-section through the center of the mountain at y = 30 km with a contour interval of 0.25 m/s; (c) vertical cross-450 

section at x = 32 km, which is 2 km downstream of the peak of the mountain and has a contour interval of 0.1 m/s; 451 

(b) and (d) horizontal cross-sections at heights z = 2000 m and z = 800 m with a contour interval of 0.1 m/s, 452 

respectively. 453 

 454 

Both results are comparable to the results of Fig. 7 in Lock et al. (2012, hereafter referred to as Lock Fig. 7), 455 

although there is a little noise along the bottom due to the use of the unstructured adaptive mesh. The center positions 456 

and amplitudes of the waves shown at the x-z and y-z slices are in good agreement in the vicinity of the mountain. 457 

When x > 38 km, the height of the third contour of the positive vertical velocity in Fig. 7a is slightly higher than that 458 

in Lock Fig. 7a. Furthermore, the magnitudes of the extreme centers at the peak of the mountain at the horizontal 459 

cross-sections (z = 2000 m and z = 800 m) are consistent with those of Lock Figs. 7b and 7d. Only the maximum value 460 

of the negative extreme center downstream of the mountains is slightly smaller than that of Lock Figs. 7b and 7d, 0.1 461 

m/s.  462 



 

 27 / 40 
 

Fig. 8 shows the 3D adaptive mesh in three cross-sections, which is used to capture the mountain wave 463 

features. Fig. 8c is the 3D perspective of Fig. 8a. We note that the mesh is denser in the area with higher velocity 464 

gradients and relatively sparser in the remainder of the domain. 465 

 466 

 467 

Fig. 8 Anisotropic adaptive meshes for the vertical field for the mountain wave simulation over a 3D bell-shaped 468 

terrain. (a) Vertical crinkle cross-section through the center of the mountain at y = 30 km; (b) vertical crinkle cross-469 

section at x = 32 km, which is 2 km downstream of the peak of the mountain; (c) 3D perspective of (a) and (d), 470 

horizontal cross-section at height z = 2000 m. 471 

 472 

To further evaluate the stability and accuracy of Fluidity-Atmosphere for a steep mountain in a high-473 

resolution simulation, we conducted another test case with 0 2000h m=  and 1000a m= , while the other 474 

parameters remained the same. 475 

The vertical velocity of the steep mountain with 0 2000h m=  and 1000a m=  at 10000t s=  is shown 476 

in Fig. 9. For this case, the coefficient representing the nonlinearity of the flow is 0 2 1Nh
u

= > , which means that 477 
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the flow is strongly nonlinear (Lilly and Klemp 1979; Ikawa 1988; Gallus and Klemp 2000; Zängl et al. 2015). In this 478 

situation, although the linear theory of mountain waves is invalid and the mountain waves break, the vertical velocity 479 

from the steep mountain has the same pattern as that shown in Fig. 7 with 0 400h m= . Naturally, the greater height 480 

of the mountain produces a stronger perturbation of the vertical velocity. Stacked velocity contours and a decay in 481 

height at the vertical cross-section at y = 30 km are observed. The properties of smoothness and symmetry are also 482 

seen at the vertical cross-section at x = 32 km and at the horizontal cross-sections at heights z = 2000 and 4000 m. A 483 

little noise at the outermost area of the contours is still detected at z = 800 m. Due to the use of adaptive meshes similar 484 

to cut-cells, semi-implicit temporal discretization and the CG method, the result remains relatively stable in the case 485 

of such a steep mountain. 486 

 487 

 488 

Fig. 9 Contour of the vertical velocity solution for the mountain wave simulation over a 3D bell-shaped 489 

terrain. (a) Vertical cross-section through the center of the mountain at y = 30 km; (b) vertical cross-section at x = 32 490 

km, which is 2 km downstream of the peak of the mountain; (c), (d) and (e) horizontal cross-sections at heights z = 491 

800, 2000, 4000 m, respectively. The contour intervals are 0.25 m/s for (a) and 0.1 m/s for all the others. The model 492 

solutions are represented at t = 10000 s. 493 
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5. Accuracy of the Orographic Representation 494 

The sufficient condition for accurately representing the underlying mountain in terrain-following coordinates 495 

is h z∆ < ∆ , where h∆  and z∆  are the deviation of the orographic height between two neighboring horizontal grid 496 

points and the vertical resolution, respectively (Ikawa 1988; Steppeler et al. 2006). However, the ability to obtain an 497 

accurate orographic representation would be hindered if the slope of the mountain became very steep or the resolution 498 

of the NWP models increased. This is because the vertical resolution would be very coarse to satisfy the condition 499 

h z∆ < ∆  with a large h∆  for high and steep mountains. During some numerical procedures, high and steep 500 

mountains may even lead to linear instability (Ikawa 1988). This error and potential instability can be removed by the 501 

use of cut-cell grids or cut-cell structures. Cut-cell structures are horizontally aligned, which means that the grid lines 502 

of the cells are cut into the mountain (for a review of cut-cell methods, see Steppeler et al. 2002 or Yamazaki and 503 

Satomura 2010). Due to the resemblance between the adaptive mesh of Fluidity-Atmosphere and the cut-cell grid, it 504 

is interesting to see whether Fluidity-Atmosphere can be used to accurately represent the terrain, thus reducing the 505 

spurious wind. In this section, based on the test case in Sect. 4.1, two simulations are conducted by (i) giving a 506 

perturbation of the potential temperature in the entire computational domain and (ii) using the treatment of node 507 

locking in the vicinity of the mountain while keeping the other parameters identical to those in Sect. 4.1. 508 

 509 
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 510 

Fig. 10 Contour of the vertical velocity solution for the mountain wave simulation over a 2D bell-shaped terrain 511 

with a constant perturbation of the potential temperature 5Kθ∆ = . The contour interval is 0.25 m/s. (a) ~ (f) show 512 

the results at t = 500, 1000, 3000, 6000, 12000 and t = 20000 s. 513 

 514 

First, we introduce an extra potential perturbation of a constant 5Kθ∆ =  over the entire domain (see Saito 515 

et al. 1998), while the setup of the test case in Sect. 4.1 is repeated. In this case, the ratio 
h
z

∆
∆

 is less than 1.0. The 516 

time integrations continue until a steady-state velocity is achieved without any physical parameterization. Figs. 10 and 517 

11 show the vertical perturbations and the adaptive mesh, respectively, at t = 500, 1000, 3000, 6000, 12000 and 20000 518 

s with the CG method and a damping operation. At the beginning of the simulation, the potential temperature 519 

perturbation stimulates the formation of the vertical velocity in the whole computational domain (Fig. 10a), leading 520 



 

 31 / 40 
 

to the aggregation of adaptive meshes in the entire domain (Fig. 11a). With a sustained horizontal velocity (constant), 521 

the impact of the potential temperature perturbation gradually becomes evanescent (Fig. 10b). At t = 3000 s, the 522 

contours of the mountain wave become visible (Fig. 10c). The induced perturbations of the vertical velocity distribute 523 

throughout the domain in such a way that the adaptive mesh remains dense (Fig. 11c). With the disappearance of the 524 

noise at the inflow and top boundaries, the mesh is adapted to be coarse upstream of the mountain (Figs. 11d ~ 11f). 525 

Although an orographic representation error appears at the beginning, this spurious wind is reduced with the CG 526 

method and the adaptive mesh of the cut-cell form in Fluidity-Atmosphere (Figs. 10d ~ f). In the vicinity of the terrain, 527 

the larger z∆  (compared to h∆ ) inhibits the development of instability, and the adaptive grid makes the orography 528 

smooth with the use of high-resolution meshes. Compared with Fig. 2g, both results are in good agreement, and the 529 

features of the mountain waves are reproduced, including the stacked vertical velocity contours and the decay of the 530 

strength with the height. Therefore, Fluidity-Atmosphere can accurately represent the underlying terrain and eliminate 531 

the spurious winds induced by the perturbation of the potential temperature. The errors in the terrain-following 532 

coordinates are reduced because the adaptive mesh forms a smoothly varying mountain in Fluidity-Atmosphere. 533 

  534 
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 535 

Fig. 11 The evolution of the adaptive mesh for the mountain wave simulation over a bell-shaped terrain of height 536 

400 m and half-width 1000 m with a constant perturbation of potential temperature 5Kθ∆ = . (a) ~ (f) show the 537 

results at t = 500, 1000, 3000, 6000, 12000 and t = 20000 s. 538 

 539 

Second, to reduce the numerical noise near the bottom in the adaptive mesh (Figs. 2c, 2e and 2g), the mesh 540 

along the bottom boundary is locked. Furthermore, to achieve the stability condition h z∆ < ∆ , we lock the terrain-541 

following mesh under the height of 2000 m as a fixed coarse mesh with dx = dz = 200 m. All the other parameters are 542 

kept the same as those in Sect. 4.1. Because the maximum derivative of the mountain height 0.3h
x
∂

<
∂

 leads to 543 

60hh dx
x
∂

∆ = <
∂

, the condition is satisfied ( 60h z∆ < < ∆ ). The adaptive mesh and the contour of the velocity 544 

components at t = 50000 s are shown in Fig. 12. 545 

The noise in the vicinity of the mountain is eliminated by the node-locking treatments for both the vertical 546 

and horizontal components of the velocity using the adaptive mesh. A comparison between the fixed mesh (Figs. 2f 547 

and 3e) and the adaptive mesh with node locking (Fig. 12) reveals that the adaptive mesh is feasible for orographic 548 

representation and that the mountain wave simulation achieves the same precision with a lower computational cost 549 

than that of the fixed mesh. 550 
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 551 

Fig. 12 Contour of the velocity solution and the corresponding mesh for the mountain wave simulation over a 2D 552 

bell-shaped terrain with node locking on the bottom boundary. (a) The horizontal velocity contour with a contour 553 

interval of 0.2 m/s and (b) the vertical velocity contour with a contour interval of 0.25 m/s of Fluidity-Atmosphere 554 

with the CG method. 555 

 556 

6. Conclusions 557 

In this study, we investigate the ability of the Fluidity-Atmosphere dynamic framework to simulate 3D 558 

mountain waves. In general, the 3D anisotropic adaptive and highly irregular mesh of Fluidity-Atmosphere performs 559 

well in simulations of mountain waves. The anisotropic adaptive mesh provides an alternative to capture mountain 560 

wave fronts propagating upward and downstream. The scheme used in Fluidity-Atmosphere can be seen as an adaptive 561 

and irregular mesh version of the cut-cell approach with a piecewise linear mountain representation. 562 

For instance, Fluidity-Atmosphere is able to generate smooth, symmetric and stable mountain waves for the 563 

flow past a bell-shaped mountain. Compared to the performance on smooth mountains (Fig. 7), Fluidity-Atmosphere 564 

also performs well by almost eliminating mesh-scale oscillations on steep mountains (Fig. 9). As an alternative to the 565 

cut-cell grid, the adaptive mesh coupled with the Galerkin method can eliminate the noise in the entire domain 566 

introduced by the strong perturbation of the potential temperature. The characteristics of mountain waves and the 567 

underlying terrain are accurately represented through automatic aggregation of the adaptive meshes. The sensitivity 568 

analysis of the mesh resolution demonstrates that the variation in the horizontal and vertical resolutions has a strong 569 

impact on the smoothness of the results and maintains convergence even at high resolutions. Currently, in order to 570 

eliminate the noise at the bottom boundary for the simulation of mountain waves, we settled for the second-best 571 
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solution, which is to lock the nodes at the bottom boundary. How to choose the mesh refinement criteria to distinguish 572 

noise and prognostic variables with comparable magnitudes should be taken into consideration in the future work.  573 
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