Final Draft
of the original manuscript:

Ofoegbu, S.U.; Yasakau, K.; Kallip, S.; Nogueira, H.I.S.; Ferreira, M.G.S.; Zheludkevich, M.L.:
modification of carbon fibre reinforced polymer (CFRP) surface with sodium dodecyl sulphate for mitigation of cathodic activity.
First published online by Elsevier: 04.02.2019

https://dx.doi.org/10.1016/j.apsusc.2019.02.024
Modification of Carbon Fibre Reinforced Polymer (CFRP) Surface with Sodium Dodecyl Sulphate for Mitigation of Cathodic Activity.

Stanley Udochukwu Ofoegbu1a, Kiryl Yasakaua, Silvar Kallipa, Helena I.S. Nogueirab, M.G.S. Ferreiraa, M.L. Zheludkevichc,d

aDepartment of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

bDepartment of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

cMagIC-Magnesium Innovation Center, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse1, 21502 Geesthacht, Germany.

dInstitute for Materials Science, Faculty of Engineering, Kiel University, Kiel, 24103, Germany.

Abstract

Suppression of electrochemical activity (cathodic activity) on CFRP surface at cathodic potentials consistent with galvanic coupling of CFRP with active metals like aluminium and zinc have been demonstrated by electrochemical treatment of CFRP surface in the presence of sodium dodecyl sulphate (SDS). Modification to the CFRP surface by SDS adsorption was established using electrochemical impedance spectroscopy, cyclic voltammetry, and confocal Raman spectroscopy and atomic force microscopy. Electrochemical test results indicate interaction of SDS with CFRP with persistent effects, manifesting in a sustained suppression of electrochemical activity even after washing the treated CFRP surface. Mitigation of CFRP degradation under cathodic polarization in the presence of SDS and/or after prior exposure to SDS was established from scanning electron microscopy. Based on results obtained herein, plausible mechanisms/configurations involved in SDS interaction(s) with carbon fibre surfaces of the CFRP composite (that most probably account for reduced cathodic activity) were postulated.

Keywords: CFRP, sodium dodecyl sulphate, surface modification, galvanic corrosion, cathodic reactivity, periodicity.

1 Corresponding Author Email:ofoegbu.stanley@ua.pt (Stanley Ofoegbu) Tel: +351 915 248 642
1. Introduction

The electrochemical activity of carbon and carbon surfaces is well known and documented [1-11], and have been exploited in a variety of applications such as, addition of carbon additives to enhance electronic conductivity in composite cathodes for Li-ion batteries [12-15], as catalyst and support for electrochemical energy conversion [16-19], oxygen reduction reaction [20-22], and sonoelectrocatalysis [23-24].

Graphitic materials are reported to possess at least two distinct types of surface sites; the basal plane and edge plane sites [25-28]. Knowledge about the reactivity of basal and edge sites on carbon surfaces have been evolving, but literature reports have been contradictory with respect to the electrochemical activity of basal sites on carbon surfaces. Whereas earlier reports had largely suggested nil or very low activity of carbon basal sites [25,26,27,29,30-33] more recent reports employing "microscopic and nanoscopic techniques" have shown that the carbon basal sites are more electrochemically active than previously thought [34-45]. From our analysis of arguments from both sides, the consensus opinion appears to be that carbon basal sites are much more electrochemically active than previously thought, but significantly less active than the edge sites. For carbon fibres, it has been demonstrated that due to a high degree of preferred orientation introduced during different stages of the manufacturing process, the graphite basal planes can be predominantly oriented parallel to the fibre axis with edge sites predominating the fibre ends [25]. Such preferential abundance of the more electro-active edge sites at the carbon fibre ends is a plausible source of its enhanced electrochemical activity.

Marked differences have been reported [46] in the values of the double layer capacitances of these two types of sites with higher values generally measured for edge sites; 3 uF cm$^{-2}$ for basal sites and 50-70 uF cm$^{-2}$ for edge sites. This difference has been exploited as a diagnostic tool to monitor changes on carbon surfaces with respect to the relative concentration of these two sites, with increase in the values of measured double layer capacitance indicative of increase in the concentration of edge sites [25]. The electrochemical activities on carbon surfaces involve electron transfer processes. The kinetics of these electron transfer processes on carbon materials can be ascribed to synergetic effects of its conductivity and surface chemistry, which can be characterized by the surface charge, surface C/O ratio, presence of quinone-like groups, and surface purity [47].

The stringent design requirements in the transport and other industries aimed at energy efficiency and environmental sustainability, promotes weight optimized design concepts in
which many materials are employed in individual products [48-54]. In the aerospace and transport industries for instance, in addition to the use of ensembles of metals and alloys, incorporation of carbon fibre reinforced polymers (CFRP) in the design of products together with metals for increased structural efficiency have been on the increase with carbon fibre reinforced polymers envisaged to be capable of constituting more than 50% of the structural mass of aircrafts [55]. This expectation has been realized with Boeing’s roll-out of the 787 with 50% composite content by weight, up from 12% composite content by weight in the earlier 777, and Airbus’ use of 53% composite content in the A350XWB up from 10% in the A340 [52,54,56-62]. This beneficial trend is however prone to galvanic corrosion of metals in electrical contact with each other, or with CFRP which is known to support cathodic reactions on galvanic coupling to metals [63-70], and electrochemical degradation of the composite [71]. In these structures, galvanic coupling of CFRP with metallic alloys is a possibility at structure edges, rivets, and joints on failure of sealing materials due to either age or service conditions, with implications on product efficiency, service life and safety. Galvanic coupling of CFRP to metallic alloys in the presence of electrolyte have been severally reported [72-75] to lead to accelerated anodic dissolution of the metal/alloy due to the well known CFRP’s ability to support cathodic reactions as a result of the presence of the electro-active carbon fibres [65,74,76-77]. In quiescent 50 mM NaCl solution limiting oxygen diffusion current densities in the range of \(\approx 40 \mu A cm^{-2} \) have been reported for CFRP [78] which is estimated to be capable of supporting anodic dissolution rates of about 0.599, 0.436, and 0.132 mm yr\(^{-1}\) for zinc, aluminium, and iron respectively (of equal surface area) on galvanic coupling to CFRP [78]. Consequently there arises a need for development of processes/procedures that can mitigate this ability of CFRP to actively support cathodic reactions at the cathodic polarizations it is subjected to, on galvanic coupling to metallic materials in composite structures.

In the light of the distinction between the electrochemical activity of two main surface sites on carbon surfaces [25], it is obvious that the solutions to mitigating the un-wanted electrochemical activity of carbon in carbon-fibre reinforced polymers coupled to metals in technologically vital applications in the aeronautical and transport industries can be either, the surface modification of the carbon to generate more of the electrochemically inactive basal plane sites, and/or the inactivation of the electrochemically active edge sites. The work reported herein is an effort in this regard, employing the latter approach in which a surfactant; sodium dodecyl sulphate (SDS) was employed, and observed to interact with CFRP surface resulting in a
sustained reduction in electrochemical activity of CFRP surface at cathodic polarizations in chloride media, even after rinsing the treated CFRP surface in distilled water.

In the present study, electrochemical methods complemented by surface analysis techniques (AFM and Raman spectroscopy) have been employed to study SDS interaction with a carbon containing composite surface with and without impressed cathodic polarization and the effect of this interaction on the electrochemical response of the CFRP surface.

2. Experimental

Solid pultruded cylindrical carbon fibre reinforced composite of diameter 8 mm made of carbon fibre Tenax HT 24 K with 65% fibre content, and epoxy vinyl matrix material produced by Modulor Material Total GmbH was used for this study. For electrochemical tests, a working electrode was prepared by cutting cylindrical pieces of height 10 - 15 mm from the as-received cylindrical material, attached to insulating conducting wire at one end, and mounted in a polymeric resin (Epokwick) so that the other flat end is free of resin. After the resin is cured, samples were removed and polished with progressively finer silicon carbide abrasive papers from grit size 220 to 2500, and rinsed in deionized water. At the beginning of a new sequence of tests the CFRP electrode surface was refreshed by progressively polishing with silicon carbide papers of grit size 400, 600, 800, 1200, and 2500 in that order.

Test electrolytes were prepared from analytical grade reagents (NaCl ≥ 99.8% and sodium dodecyl sulphate ≥ 99%) both from Sigma - Aldrich without further purification using Type 1 deionized water from a Millipore system (resistivity > 18 MΩ-cm).

Electrochemical tests (electrochemical impedance spectroscopy, cathodic polarization, potentiodynamic polarization, and cyclic voltammetry) were done using an Autolab PGSTAT 302N potentiostat using a 3-electrode setup. Electrochemical impedance spectra was acquired from 100,000 to 0.01 Hz at 60 points distributed logarithmically. Cathodic polarization was effected at -1000 mV_SCE. Potentiodynamic polarization was effected 10 mV from OCP values after 1 hour immersion in test electrolyte with a potential step of 2.44 mV and a scan rate of 1 mV/s. Cyclic voltammetry was done with same potential step between -1000 mV and +100 mV (SCE) but at a faster scan rate of 50 mV/s after 1 hour of desired surface modification and another hour immersion in quiescent 50 mM NaCl solution post surface modification.

Surface image acquisition and analysis was done using a Hitachi SU-70 high resolution scanning electron microscope with a micro-analysis system for energy dispersion spectrometry X-ray / EDS, (Bruker model QUANTAX 400 and XFlash 4010 light-duty detector). Confocal Raman
spectroscopy was done using the 532 nm laser on a WITec alpa 300+ confocal Raman spectrometer system.

AFM studies were carried out in-situ on highly ordered pyrolytic graphite (HOPG) samples exposed to 50 mM NaCl solutions containing different concentrations of SDS (0 - 20 mM SDS) with and without cathodic polarization. Prior attempts at AFM studies on the composite CFRP surface were unsatisfactory due to difficulties in obtaining composite surface of sufficient atomic flatness. AFM measurements were carried out using a commercial Veeco MultiMode AFM with a NanoScope IIIa controller and extended electronic module (software version v5.12r5) with a contact-mode liquid cell. The AFM piezo scanner model AS-12V was calibrated using reference silicon gratings purchased from Micromash with a 3 µm lateral pitch and a step height of 90 nm. Probes were made of oxide-sharpened silicon nitride (NP-S20 Veeco) with a reflective gold coating on the back side and a nominal spring constant of 0.06 N/m. The tips were irradiated by UV light (254 nm) for 60 minutes prior to the experiment. The fluid cell was filled with about 0.5 mL of a solution and left for about 60 minutes to reach thermal equilibrium before the measurement.

Imaging of micellar aggregates was performed at low force set points in the pre-contact repulsive force regime [79,80]. Force set points have been adjusted to generate the best contrast in the repulsive force regime. The following measurement parameters were employed: line frequencies of 5 Hz and low integral and proportional gains (typically about 0.5-1). Image optimization followed the procedure described in Ref. [79]. All presented AFM images represent deflection signal without any treatments apart from those used during the scanning. All dimensional measurements of surface features are an average of independent measurements on AFM maps. In estimation of periodicity in the AFM images in this work the Autocorrelation Function which employs the root mean square deviation of the heights σ and $T -$ the autocorrelation length was employed. This treatment filter averages all the map features and we adjudge it to be better than the measurements of single profiles on AFM maps.

3. Results and Discussions

3.1. Results from electrochemical tests

Figure 1 presents the results of potentiodynamic polarization tests in quiescent 50 mM NaCl solution without and with sodium dodecyl sulphate (SDS) in six concentrations varying from 0.1 mM to 20 mM. The result indicates a concentration related marginal reduction in cathodic
current densities in virtually the entire studied potential range (from OCP to -2000 mV\textsubscript{SCE}), in the presence of SDS, which is most significant in the non-diffusion limited region from OCP to about -200 mV. On the basis of these observations it is postulated that most probably due to the well known surfactant properties of SDS, it interacts with the CFRP surface in a manner that retards oxygen transport to the surface (lower limiting diffusion current density) and electron transport across the interface that results in lower current densities above -1600 mV\textsubscript{SCE} cathodic potentials for the secondary cathodic reaction of water reduction with hydrogen evolution. Additionally, adsorption of SDS to the CFRP surface can suppress this cathodic reaction by inhibiting the atomic hydrogen re-combination step.

Fig. 1. Cathodic potentiodynamic polarization scans (scan rate 1 mV/s) on CFRP in 50 mM NaCl with different concentrations of sodium dodecyl sulphate (SDS).

To confirm the suppression of cathodic reactions by SDS interaction with CFRP surface, with and without prior cathodic polarization in the absence and presence of SDS, cyclic voltammetric tests were performed, and the response to cathodic activity on CFRP surface monitored through the well known cathodic reaction around -250 mV\textsubscript{SCE} attributed to the 2-electron reduction of oxygen with formation of hydroxyl ions and hydrogen peroxide \[81\]. From the comparative voltammograms of the first (Fig.2a) and second scans (Fig.2b), similar trends of significant reduction of this cathodic peak is confirmed (even on successive scans, Fig.2a and 2b) after exposure to SDS with and without the simultaneous application of a
cathodic polarization, compared to values in the absence of SDS after prior cathodic polarization. The smaller peaks observed in the absence of SDS (lemon green line) and prior to cathodic polarization (black line) indicates that prior exposure of CFRP surface to a cathodic polarization favours enhanced cathodic activity. This enhancement is attributed to the possible increase in electro-active surface area due to the degradative effect of the applied cathodic polarization (see SEM images; Fig. 6).

Fig.2. Cyclic voltammograms of CFRP in 50 mM NaCl without and after prior exposure to cathodic polarization in the presence and absence of SDS (scan rate 50 mV/s), (a) 1st scans and (b) 2nd scans.

To study the mechanism of the interaction of SDS with CFRP surface, electrochemical impedance spectroscopy was employed and spectra acquired from CFRP immersed in quiescent 50 mM NaCl with and without 5 mM SDS after different immersion times varying from 5 minutes to 24 hours with and without polarization (at OCP) presented as Bode and Nyquist plots (Fig. 3).
Fig. 3. Bode and Nyquist plots for CFRP in 50 mM NaCl without and with applied cathodic polarization of -1000 mV$_{SCE}$ in the presence of 5 mM SDS.

The EIS spectra of CFRP in 50 mM NaCl + 5 mM SDS (Fig. 3) manifest two time constants. The mid-frequency time constant is attributed to SDS adsorption, and the low frequency time constant to charging of the double layer. Though the presence of this second time constant attributed to SDS adsorption on CFRP surface as it is not easily discernable from the Nyquist plots, (Fig. 3c and 3d), its emergence is marked by increased asymmetry observable in mid to low frequency section of the angle phase vs frequency plot in the presence of both cathodic polarization and SDS (Fig. 3b, lemon green symbols), and the fact that the data fitted poorly to the one-time constant equivalent circuit (Fig. 4d, circuit 1). However, the inference of the existence of an emergent 2nd time constant is based on asymmetry observable in mid to low frequency section of the angle phase vs frequency plot and the fact that the data fitted poorly to the one-time constant equivalent circuit. Such trends can be observed in instances where an emerging time constant is small relative to the predominating time constant, and can be discriminated from each other by the application of impressed polarization which the potential sensitive time constant to be enhanced or suppressed relative to the other as for...
instance in studies involving semi-conducting oxides on metal electrodes. This treatment was not possible in this instance because SDS adsorption on CFRP surface was not sensitive enough to changes in potential to permit such treatment.

The tests in the presence of SDS was done in triplicate. From Fig. 3 it can be observed that the low frequency impedance in the presence of SDS and cathodic polarization of -1000 mV$_{SCE}$ is consistently slightly higher than that in the presence of cathodic polarization but without SDS, but smaller than that in the absence of both (red symbol for measurement at OCP). It is concluded that under the applied cathodic polarization, the presence of SDS impedes composite electrochemical activity.

To confirm if these observed effects can be sustained outside the SDS (inhibitor) containing solutions, 3 sets of sequential immersion and EIS tests were carried out after immersion and testing in SDS containing solutions in 50 mM NaCl. In the first sequential test the EIS spectra of CFRP is acquired in 50 mM NaCl containing 5mM SDS after 1 hour immersion without any cathodic polarization (solution 3), and then in 50 mM NaCl only after another hour immersion without any cathodic polarization (solution 4). The aim was to establish whether the inhibitive effects observed after immersion in SDS containing solutions at OCP is sustained in aggressive media in the absence of inhibitors. In the second sequential test, the EIS spectra of CFRP is acquired in 50 mM NaCl containing 5mM SDS after 1 hour immersion under a cathodic polarization of -1000 mV$_{SCE}$ (solution 5), and again after 1 hour immersion in the same solution but without cathodic polarization (solution 6). In the third sequential test, the EIS spectra of CFRP is acquired in 50 mM NaCl containing 5mM SDS after 1 hour immersion under a cathodic polarization of -1000 mV$_{SCE}$ (solution 7), and then in 50 mM NaCl after another hour immersion with a sustained cathodic polarization of -1000 mV$_{SCE}$ (solution 8). The aim of this sequence of tests was to confirm if inhibitive effects in SDS containing solutions under cathodic polarization are sustained on exposure under cathodic polarization in uninhibited solutions. Prior to transfer to a new test solution the sample was washed by dipping severally in distilled water and under a jet of distilled water. The results from these sequential EIS tests are presented in Fig. 4. For clarity, the Nyquist and Bode plots from solutions 1-5 are presented in Fig.4a and 4b respectively, while the others are included in the plots in the accompanying supplementary material (S1 and S2).
Fig. 4. Measured EIS data from sequential tests on CFRP, (a) Nyquist plots, (b) Bode plots, (c) low frequency impedance at 10^{-2} Hz, and (d) equivalent circuits used to fit impedance spectra.

Nyquist and Bode plots (Fig. 4a and 4b, and supplementary materials S1 and S2) indicate a reduction in capacitive response of CFRP on polarization with or without SDS (solutions 2, 5, and 7) compared to trends at OCP (Solution 1 and 4). From Fig. 4c, it is observed that a marked improvement is obtained in the low frequency impedance in the presence of SDS and without any polarization (solution 3) and sustained after washing in distilled water and testing in 50 mM NaCl without an applied cathodic polarization (solution 4) compared to values obtained in 50 mM NaCl (solution 1) without prior immersion in SDS containing solution. This results indicate that the inhibitive effects obtained by immersion in SDS containing solution at OCP is sustained on removal from the inhibitor solution and on exposure to aggressive media. Comparing low frequency impedance values (IZI at 10^{-2} Hz) measured in solutions 5 and 6 with that measured in solution 2 in Fig. 5a, it is observed that addition of 5 mM SDS to 50 mM NaCl causes an increase in the measured low frequency impedance even under a cathodic polarization of -1000 mV$_{SCE}$ (solution 5) compared to the value obtained in uninhibited solution under cathodic polarization (solution 2). On re-testing the sample in same inhibited solution after a further 1 hour
immersion but without an applied cathodic polarization (solution 6) the IZI values obtained were marginally higher than that obtained in same solution with applied cathodic polarization, and in the uninhibited solution (solution 2) with cathodic polarization. Though marginal, these observations suggest that the inhibitive effects on CFRP degradation due to of SDS adsorption is sustained both in the presence and absence of a cathodic polarization. Comparing the sustained and higher IZI values obtained both after testing under cathodic polarization in inhibited solution (solution 7) and after washing in distilled water and testing in uninhibited solution after 1 hour immersion under cathodic polarization (solution 8) with values obtained in uninhibited solution under cathodic polarization (solution 2) confirms the stability of the inhibitive effect, and hence the adsorbed layer obtained on CFRP by immersion of CFRP in SDS containing solution with or without cathodic polarization.

The acquired impedance spectra were fitted to the equivalents circuits presented in Fig. 4d (circuits 1 and 2). The one time constant equivalent circuit (Fig. 4d, circuit 1) was used to fit data obtained in the absence of SDS in 50 mM NaCl with or without cathodic polarization, while the two time constant equivalent circuit (Fig. 4d, circuit 2) was used to fit data acquired in the presence of SDS and the results presented in Fig 5. From Fig. 5a, it is observed that irrespective of the testing sequence, with application of cathodic polarization and without application of a cathodic polarization, once the CFRP has been exposed to SDS containing solution the measured values of the charge transfer resistance (R_{ct}) was consistently higher than the polarization resistance (R_p) measured in uninhibited solution with cathodic polarization (solution 2). This observation is indicative of an increased and sustained resistance to charge transfer and/or mass transfer processes after exposure of CFRP to SDS laden solutions. The resistance attributed to the adsorbed SDS layer (R_{ads}) is observed to be lowest in the absence of a cathodic polarization (solutions 3 and 4) but increased markedly in the presence of SDS and cathodic polarization or after prior simultaneous exposure to both. By comparison of the R_{ads} values in solution 4 (CFRP exposure to SDS at OCP and then measurement in 50 mM NaCl only) and in solution 8 (CFRP exposure to SDS at -1000 mV$_{SCE}$ and then measurement in 50 mM NaCl at -1000 mV$_{SCE}$) which are similar, it is concluded that the adsorption of SDS on CFRP surface and the resultant inhibitive effect is sustained, with or without the simultaneous application of a cathodic polarization. From Fig. 5b, a drastic reduction in the double layer capacitance (C_{dl}) is observed in SDS containing test media without cathodic polarization (solution 3) and was sustained after washing in distilled water and testing in 50 mM NaCl after 1 hour immersion.
without cathodic polarization (solution 4). This same trend of marked decrease of double layer capacitance (C_{dl}) is observed in all the other sequential tests involving CFRP exposure to SDS with/or after application of cathodic polarization of -1000 mV$_{SCE}$ (solutions 5, 6, 7, and 8). The capacitances in all the respective sequential tests were observed to be dominated by capacitive effects attributed to the adsorbed SDS layer which is an additional confirmation of the presence of a persistent adsorbed layer on CFRP surface after exposure to SDS containing solutions with or without an applied cathodic polarization.

3.2. Results from surface analysis of CFRP surface

A very plausible mode of SDS interaction with the surfaces of the electrochemically active carbon fibres is by adsorption. The adsorption of surfactants on metal surfaces have been known to influence electrochemical behaviour [81], with positive implications for corrosion mitigation and electroplating [82]. The presentations of micelles observed in SDS bulk solutions is reported [83] to vary with SDS concentration. In bulk solution, SDS forms roughly spherical micelles at SDS concentration of 8 mM [83], elliptical micelles at 80 mM SDS concentration [84], and some proof of cylindrical micelles at 0.87 M [85]. At the interface between the bulk solution containing SDS and a substrate (in this case carbon fibres), there is bound to be some changes in the nature of the aggregation on the substrate. Király et al. [86] studied the organization of sodium n-decyl sulfate at the graphite/solution interface by adsorption calorimetry and reported that adsorption of SDeS from aqueous solution onto graphite follows a two-step mechanism as a function of the surfactant concentration. The first step at low concentrations involving a strongly exothermic process that is apparently independent of (or only marginally dependent on) the temperature and the surface coverage, and results in the formation of a flat, ordered monolayer. The second adsorption step was postulated to be less exothermic, and apparently independent of (or only marginally dependent on) the surface coverage, but strongly dependent on the temperature. To explain their results [86] a mechanism in which two adsorbed phases (a water-rich and a surfactant-rich domains) coexist during monolayer formation in the first step was proposed with the formation of loosely packed surface hemi-cylinders in the second step facilitates by the prior formed underlying monolayer as the solution concentration is increased towards the critical micelle concentration (cmc). With calorimetric evidence that the adsorption and aggregation of cationic and anionic surfactants follow the same adsorption mechanism on the surface of
they [86] concluded that the similarities in the aggregation behaviours of SDS in aqueous solution and at the graphite/solution interface originated from intermolecular hydrophobic interactions. Manne at al. [87,88] employed atomic force microscopy to image adsorbed surfactant aggregates on graphite surface, presented an unambiguous experimental proof of the formation of hemi-cylindrical micelles on graphite by surfactants, and attributed the hemi-micelle structure to templating by the epitaxially bound monolayer. Wanless and Ducker [89] studied the organization of sodium dodecyl sulphate at the graphite-solution interface and reported that sodium dodecyl sulfate adsorbed to graphite in an organized structure in the form of hemi-cylindrical periodic structures (aggregates of height ≈ 1.7 ± 0.7 nm) when the solution concentration exceeded 2.8 mM (up to 81 mM) but observed no structures at or less than 1.6 mM SDS concentration. They [89] showed the variation of the distance between the adsorbed hemi-cylindrical aggregates with both surfactant concentration and ionic strength, and reported that the periodicity of the structures decreased with increasing SDS concentration. On the basis of these observations they [89] postulated that the surface aggregation concentration (sac) is in the range of 1.6 to 2.8 mM which is about a quarter of the critical micelle concentration (cmc). The surface aggregation concentration (sac) is reported to be sensitive to the presence of NaCl (equivalent to changes in ionic strength); decreasing in value in the presence of NaCl. In a follow-up work [83], Wanless and Drucker established the weak influence of divalent ions on anionic surfactant surface-aggregation, which can explain the challenges observed in attempts at exploiting the reduced cathodic activity on CFRP achieved in this work in mitigating multi-material corrosion in assemblies comprised of CFRP and metals whose anodic dissolution in the presence of SDS is prone to serve as sources of divalent and/or trivalent ions [78].

Domínguez [90] employed molecular dynamics simulations to study adsorption of sodium dodecyl sulfate (SDS) molecules onto graphite surface in different salt (NaCl)/water solutions and obtained results showing the formation of hemicylindrical aggregates, at different salt concentrations in agreement with AFM data [89], but with the hemicylinders exhibiting different structures as the salt concentration was increased. There is a consensus that surfactants on hydrophobic surfaces (e.g., graphite) self-organize in hemicylinders due to the fact that the substrates interact primarily with the tail groups through van der Waals forces [87], while hydrophilic substrates interact primarily with the surfactant headgroups giving rise to different presentation of aggregates on hydrophilic surfaces.
To determine the possible origins of the observed electrochemical effects on CFRP after treatment with SDS, surface analyses were made employing combining scanning electron microscopy with energy dispersive x-ray (EDX) elemental mapping of CFRP surface prior and post exposure and the results presented in Figs. 6 and 7.

Fig. 6. SEM images of CFRP as received (a), and after immersion in 50 mM NaCl for 2 hours at -1000 mV_{SCE} in the absence (b), and presence of 5 mM SDS (c).

SEM images of CFRP (Fig. 6.) before and after exposure to cathodic polarizations of -1000 mV_{SCE} in the absence (Fig. 6b) and presence of SDS (Fig. 6c) show marked reduction of the interfacial damage observed under similar polarization in its absence. On application of a cathodic polarization without SDS (Fig. 6b) composite degradation manifest predominantly as interfacial damage (indicated with lemon green arrows) and carbon fibre erosion (indicated with magenta arrows). Both of these two degradation mechanisms result in increase in surface area which in turn leads to increase in electrochemical activity. In contrast, on application of a cathodic polarization in the presence of SDS (Fig. 6c) composite degradation by both mechanisms; interfacial damage and carbon fibre erosion is mitigated. This effect is inferred to emanate from the presence of an adsorbed layer of SDS on the composite surface that interferes with the
degradative electrochemical processes that can take place on CFRP surface under cathodic polarization [71,91-93].

The EDX mapping results for carbon (Fig. 7b) resolves the spatial distribution of the carbon fibres on the CFRP surface by the higher counts recorded for carbon over carbon fibre surfaces in the composite compared to the epoxy matrix. On the contrary, the EDX mapping results for sulphur which was used as a marker for the presence of SDS only confirmed the presence of SDS on CFRP surface post exposure but was unable to confirm any preferential adsorption/interaction with the carbon fibres or epoxy matrix. This is thought to arise from the small amount of SDS on the sample surface. Confocal Raman spectroscopy/microscopy was employed in an attempt to overcome this challenge, and the results presented in Figs. 8. and 9.
True to type the Raman spectra of the long chain sodium dodecyl sulphate (SDS) (Table 1, Fig. 8, spectra (b) and (d)) is marked by peaks attributable to skeletal vibration modes of the linear tail. Vibration in the higher energy regions of the spectra between 2800 cm\(^{-1}\) and 3000 cm\(^{-1}\) has been generally attributed to C-H stretching vibrations and dominated by two peaks around 2850 cm\(^{-1}\) and 2885 cm\(^{-1}\) linked to the symmetric and anti-symmetric vibration modes of the CH\(_2\) groups of the tail, respectively [94-97]. Peaks in the lower energy region in the range of 1050 to 1500 cm\(^{-1}\) were attributed to skeletal vibration modes predominantly comprised of C-C stretching vibrations between 1050 cm\(^{-1}\) and 1150 cm\(^{-1}\), CH\(_2\) twisting mode around 1300 cm\(^{-1}\), and the CH\(_2\) bending modes around 1440-1460 cm\(^{-1}\) [94,95]. The bands between 400 cm\(^{-1}\) and 1000 cm\(^{-1}\) have been generally attributed to the OSO\(_3^{-}\) Na\(^{+}\) polar headgroups [94,95], and the bands in the solid SDS around 406 cm\(^{-1}\), 425 cm\(^{-1}\), 573 cm\(^{-1}\), 598 cm\(^{-1}\), and 635 cm\(^{-1}\) closely attributed to the SO\(_3^{-}\) moiety [95] and band around 841 cm\(^{-1}\) and 1000 cm\(^{-1}\) attributed to S-OC headgroup vibrations [94,95].
According to Johnson and Tyrode [98] disagreements exist in literature on the assignment of Raman peaks of SDS around 1060 cm\(^{-1}\) and 1088 cm\(^{-1}\) (in the 1000 cm\(^{-1}\) and 1100 cm\(^{-1}\) range) in adsorption experiments. Whereas Kalyanasundaram and Thomas [99] attributed the peaks reported at 1064 cm\(^{-1}\) and 1086 cm\(^{-1}\) to C–C stretch and vs(SO\(_3\)) respectively, Picquart [94] in a later study attributed the peak observed at 1063 cm\(^{-1}\) to a superposition of a skeletal C–C stretch and vs(SO\(_3\)). This latter assignment and explanation for the peak at 1063 cm\(^{-1}\) by Picquart, [94] is supported by the works of two independent authors [99,100] who using other molecules possessing either C–C bonds or an SO\(_3\) group, but not both, confirmed that the superposition of both a C–C stretch and vs(SO\(_3\)) manifest resonances around 1063 cm\(^{-1}\) [98]. In the light of these, the peak assignments of Picquart [94] are adopted in this work for monitoring SDS interaction/adsorption on CFRP surface.

The emergence of peaks in the range 400 to 1000 (Table 1) that is non-controversially attributed to SDS headgroup bands around 406 cm\(^{-1}\),425 cm\(^{-1}\),573 cm\(^{-1}\),598 cm\(^{-1}\), and 635 cm\(^{-1}\) particularly attributed to the SO\(_3\)\(^-\) moiety [95] and bands around 841 cm\(^{-1}\) and 1000 cm\(^{-1}\) attributed to S-OC headgroup vibrations [94,95] on carbon fibres after immersion in 50 mM NaCl + 10 mM SDS solution at -1000 mV\(_{SCE}\) (Fig. 8, spectra (c)) confirm interaction/adsorption of sodium dodecyl sulphate (SDS) onto carbon fibre surface. The well defined nature and sharpness of the peaks in the 1050 - 1150 cm\(^{-1}\) region attributable [95] to skeletal vibrations (C-C binding) on carbon fibre surface, after immersion in very dilute SDS solution under cathodic polarization (Fig. 8, spectra (c)) compared to CCD counts in saturated SDS solution (Fig. 8, spectra (b)), and SDS powder (Fig. 8, spectra (d)) is suggestive of some ordered arrangement of SDS molecules on carbon fibres under the test conditions, that does not appear to constrain these skeletal (C-C binding) vibrations; possibly hemi-micellar aggregates [98].
Fig. 8. Raman Spectra measured (a) over carbon fibres in CFRP as is, (b) in saturated SDS solution (c) over carbon fibres in CFRP after 1 hr in 50 mM NaCl + 10 mM SDS solution at -1000 mV SCE, and (d) on SDS powder.

Although the Raman spectra acquired over the epoxy component of the CFRP composite (Fig. 9, spectra (a and b)) presents bands for epoxy that are difficult to distinguish from those of SDS (Fig. 9, spectra (c and d)) particularly in the 1000 to 3200 cm\(^{-1}\) range, it is possible to establish the presence of SDS on the surface of the epoxy matrix from the peaks in the range of 400 cm\(^{-1}\) to 1000 cm\(^{-1}\) generally attributed to the headgroup vibrations. Proof of SDS presence on the epoxy matrix surface is established by the observance of enhanced peaks around 392 cm\(^{-1}\), 580 cm\(^{-1}\), and 821 cm\(^{-1}\). Okabayashi et al., [101] have reported a medium peak around 417-420 cm\(^{-1}\) they attributed to -SO\(_3\) rocking vibrations, medium peak around 580-584 cm\(^{-1}\) attributed to -SO\(_3\) symmetric deformation, and a very sharp peak around 1062-1065 cm\(^{-1}\) they attributed to -SO\(_3\) symmetric stretching vibrations.

On the basis of the observed data trends in this work and various literature reports on SDS
adsorption on graphite surface [94,95,98,99,101,102], it is postulated that SDS adsorbs to both
the carbon fibres and epoxy matrix components of the CFRP composite albeit by different
mechanisms with monolayer adsorption predominant on the epoxy matrix and hemicelle
formation predominating on carbon fibre surface (Fig. 10). This postulation is supported by the
results of in-situ AFM studies carried out on highly ordered pyrolytic graphite (HOPG) samples
exposed to 50 mM NaCl solutions containing different concentrations of SDS and presented
below (in Section 3.3 and Figs. 11 to 13).
<table>
<thead>
<tr>
<th>Peak No.</th>
<th>SDS Powder</th>
<th>Saturated SDS Solution</th>
<th>CFRP after -1 V in SDS</th>
<th>Carbon fibres as is</th>
<th>Epoxy of CFRP as is</th>
<th>Epoxy of CFRP after -1 V in SDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>424.12</td>
<td>211.19</td>
<td>240.27</td>
<td>1342.46</td>
<td>505.81</td>
<td>243.17</td>
</tr>
<tr>
<td>2.</td>
<td>595.81</td>
<td>415.59</td>
<td>392.80</td>
<td></td>
<td>1605.97</td>
<td>392.80</td>
</tr>
<tr>
<td>3.</td>
<td>634.73*</td>
<td>832.16</td>
<td>640.28*</td>
<td></td>
<td>802.20</td>
<td>580.22</td>
</tr>
<tr>
<td>4.</td>
<td>837.58</td>
<td>1062.08</td>
<td>670.72</td>
<td></td>
<td>832.10</td>
<td>821.31</td>
</tr>
<tr>
<td>5.</td>
<td>1085.78</td>
<td>1298.63**</td>
<td>824.03</td>
<td></td>
<td>1001.30</td>
<td>929.18</td>
</tr>
<tr>
<td>6.</td>
<td>1127.74</td>
<td>1440.87**</td>
<td>1112.03</td>
<td></td>
<td>1109.60</td>
<td>1001.21</td>
</tr>
<tr>
<td>7.</td>
<td>1296.07*</td>
<td>2724.39</td>
<td>1185.10</td>
<td></td>
<td>1185.35</td>
<td>1187.70</td>
</tr>
<tr>
<td>8.</td>
<td>1435.83*</td>
<td>2849.04</td>
<td>1231.73</td>
<td></td>
<td>1316.91</td>
<td>1342.07</td>
</tr>
<tr>
<td>9.</td>
<td>2726.52</td>
<td>2897.05</td>
<td>1249.80</td>
<td></td>
<td>1446.38</td>
<td>1387.82</td>
</tr>
<tr>
<td>10.</td>
<td>2844.85</td>
<td>2957.14**</td>
<td>1298.63***</td>
<td></td>
<td>1558.92</td>
<td>1455.96</td>
</tr>
<tr>
<td>11.</td>
<td>2876.21*</td>
<td>1450.94***</td>
<td>1603.50</td>
<td></td>
<td>1605.36</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>1460.99</td>
<td>2546.74</td>
<td></td>
<td>2543.19</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>1607.83</td>
<td>2601.16</td>
<td></td>
<td>2760.53</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>2874.13*</td>
<td>2653.03</td>
<td></td>
<td>2926.12</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>2884.56</td>
<td>2710.95</td>
<td></td>
<td>2967.45</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td>2905.37</td>
<td>2759.93</td>
<td></td>
<td>3061.60</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td>2926.12</td>
<td>2819.12</td>
<td></td>
<td>3118.30</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td>2932.33</td>
<td>2929.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td>2957.14**</td>
<td>3067.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td>2963.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td></td>
<td>3067.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Peaks observed around this wavenumber in SDS or SDS solutions
** Peaks observed around this wavenumber in CFRP and SDS powder or solutions
Fig. 10. Proposed mechanisms of SDS adsorption onto carbon fibre and epoxy matrix surfaces (For clarity more of the SDS molecules forming the hemi-cellular aggregate(s) in Fig. 10a were omitted).

3.3. Results from AFM surface analysis of Carbon (Highly Ordered Pyrolytic Graphite) surface prior to and after exposure to 50 mM NaCl solutions containing SDS.

Due to challenges to obtaining atomically flat surfaces of the CFRP composite, and in the light of the fact that SDS interaction with CFRP most probably occur predominantly via the component carbon fibres, AFM studies were conducted using highly ordered pyrolytic graphite (HOPG) samples exposed to 50 mM NaCl solutions containing different concentrations of SDS (0 - 20 mM SDS) with and without cathodic polarization.

Results from AFM measurements on HOPG surfaces after exposure to 50 mM NaCl solutions containing SDS (Figs. 11 and 12) confirm interaction of SDS with carbon surface evidenced by a periodicity with a pitch size of ≈ 4.7 nm in 50 mM NaCl + 5 mM SDS (Fig.11). and ≈ 4.1 nm in 50 mM NaCl + 10 mM SDS (Fig.12). Such concentration dependent variations in the periodicity of adsorbed layers have been reported in the literature [89]. The periodicity trend observed in this work is in tandem with recent literature data on the periodicity of cylinders obtained in SDS solutions on HOPG [103] which reported that the micellar spacing varies with
with respect to the SDS concentration, decreasing from a periodicity of 6.7 ± 0.1 nm at 7.5 mM SDS to 4.5 ± 0.1 nm at 15 mM SDS and a slight increase in the micellar periodicity from 4.5 ± 0.1 nm to 4.8 ± 0.1 nm on addition of 20 mM NaCl. A much earlier work [89] had reported periodicities of 5.2 nm in 81 mM SDS solutions, ≈ 5 nm in 16 mM SDS in NaCl solutions, and 5.2 - 6.5 nm in 2.8 mM SDS solutions in the presence of NaCl. Discrepancies in estimations of periodicity of micellar semi cylinders on HOPG can be attributed to a variety of factors such as the possible presence of contamination by the SDS hydrolysis product; 1-dodecanol [89], differences/changes in the ionic strength of solution, temperature, scanner etc.
Fig. 11. Atomic force microscopy data acquired on HOPG sample in 50 mM NaCl + 5 mM SDS solution.
Fig. 12. Atomic force microscopy data acquired on HOPG sample in 50 mM NaCl + 10 mM SDS solution.
Fig. 13. AFM topography (a) and Deflection (b) information over the HOPG surface in-situ in 50 mM NaCl + 10 mM SDS solution. On this image it can be observed that the half cylinders are aligned in different directions.

From Fig. 13; (a) the AFM topography and (b) deflection images acquired over the HOPG surface in-situ in 50 mM NaCl + 10 mM SDS solution it can be observed that the half cylinders of the SDS "molecular aggregations" align in different directions forming "boundaries". The presence of a majority of these boundaries have been attributed to steps in the graphite surface, but in the light of the fact that not every step contained a grain boundary, and not every boundary was located at a step [89], these differences in orientation have also been associated with the underlying hexagonal structure of the graphite [87]. An alternative explanation was that the orientation may be due to growth from steps on the graphite, while the step orientation is determined by crystallography of the carbon surface [87,89].

Chen et al., [104] have demonstrated that the electrical state of a surface (namely surface charge or applied potential) plays an integral role in determining the morphology of surfactants at solid interfaces and thus the electrical parameter can be easily manipulated in situ, as a tunable means to control films of soft condensed matter. Chen et al., [104] also demonstrated that the surface concentrations of three surfactants; sodium dodecyl sulfate (SDS), N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS) and N-decyl-N,N,N-
trimethylammonium triflate (DeTATf), adsorbed on Au (111) electrode surface were lowest at
cathodic potentials (which corresponds to negative charge densities at the electrode
surface), and hence rightly postulated that positive charge(s) on the metal surface is needed to
screen the electrostatic repulsion between the surfactant head-groups allowing for a much
greater packing density.

Based on insights drawn from literature [104] cathodic polarization of carbon surface(s)
in the presence of SDS was anticipated to lead to a decrease in adsorption of molecules as
observed for Au substrate [104]. Since PZC on HOPG is about -0.24 VSE [29, 104, 105, 106, 107]
the surface will be negatively charged at cathodic polarizations below that potential. This
change will most probably result in collapsing of the semi-cylindrical structure of SDS adsorbed
on HOPG surface without polarization. Such anticipated scenario of reduced SDS adsorption on
carbon surface under cathodic polarization appear to be at variance with electrochemical test
data, which might be indicative that some effects not related to increase in SDS adsorption unto
carbon surface at cathodic polarization(s) are most probably responsible for the observed
reduction in cathodic activity of CFRP on exposure to SDS containing solutions.

Efforts to confirm these expectations by making in-situ AFM measurements on HOPG
surface in the presence of SDS containing solutions with applied cathodic polarization were
unsuccessful at the moment due to the problems of disengagement of the surface by the tip on
application of polarization and gas evolution in a cell with small electrodes and little space that
makes flushing the gas challenging.

Tip disengagement occurred during attempts to measure surface topography of HOPG
simultaneously with application of a DC voltage. The challenge of tip disengagement is not
trivial and can be the subject of further study. However, an appreciation of this challenge is vital
to its resolution. First of all by applying a potential difference (positive or negative) between
HOPG and a counter electrode (Pt) an electrostatic force develops between the sample and a
tip. We suspect that the force or thermal drift due to current passing through the solution may
push or pull the tip from/to the surface as the deflection signal changes and goes out of the
limits (+/−10 V). This does not let us to stay in the "repulsive force regime" in which we make
measurements of distribution of surfactant micelles on the surface. Furthermore, the applied
potential difference being rather high (-1000 mV) promote side electrochemical reactions
where water is split with the formation of gas(es); either H₂ or O₂. The gas bubbles then blocked
the path through which laser beam was directed onto the cantilever and eventually obstructed
the measurements in the closed glass fluid cell.

In order to solve the problem, perhaps a much lower potential difference has to be applied compared to what was used in amperometric and EIS measurements in this work. Using a lower potential difference will put us away from real experimental conditions, though it may allow to perform AFM experiments in electrostatic repulsive force regime. Gas evolution is a more significant problem which calls for development of an open liquid cell to drain gas bubbles away. However, there is noticeable evaporation of electrolyte solution in an open fluid cell, which has to be solved as well. We should also mention that there must be a certain thermal equilibrium achieved between the solution and the cantilever. This is important as the drift of deflection signal appears to be too fast when there is no thermal equilibrium between the cantilever and the solution. The high changes of cantilever's deflection are especially noticed when a fresh solution is pumped to the fluid cell. At high drift it is impossible to put a setpoint necessary to maintain the repulsive force regime. Hence some time has to be given to bring the cell to some sort of stationary conditions before any attempts to run a AFM experiment. Again different factors have to be solved simultaneously when performing DC polarization simultaneously with AFM measurements such as electrostatic force acting on tip, thermal drift, gas evolution and with that many factors we have not yet been able to obtain meaningful results.

4. Conclusions

From the results it is concluded that SDS interacts with CFRP surface resulting the formation of a persistent adsorbed layer. Electrochemical tests demonstrate that adsorption of SDS to CFRP surface leads to reduced electrochemical activity evidenced by a reduction in its ability to sustain cathodic reactions. Surface analysis by confocal Raman spectroscopy of the treated CFRP surfaces post-treatment indicates adsorption of sodium dodecyl sulphate on both the surfaces of the reinforcing carbon fibres and the epoxy matrix of the composite. Surface analysis by scanning electron microscopy confirm mitigation of the CFRP composite degradation under impressed cathodic polarization in the presence of SDS or after prior exposure to SDS containing solution.
Acknowledgements

Funding from FCT project: “Corrosion and Corrosion Protection in Multi-material Systems”, (PTDC/CTM/108446/2008), and European FP7 project: “Active PROtection of multi-material assemblies for AIRcrafts” [“PROAIR” (PIAPP-GA-2013-612415)] are acknowledged. S.U. Ofoegbu and S. Kallip acknowledges Fundação para a Ciência e a Tecnologia (FCT) Portugal for doctoral (SFRH/BD/75167/2010) and post-doctoral (SFRH/BPD/64580/2009) grants respectively. This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

Conflict of Interests: The authors declare that there are no conflict of interests.
References

containing LiFePO₄ cathodes for high-power applications. Journal of power sources, 162(1), 673-678.

85. Reiss-Husson, F., & Luzzati, V. (1964). The structure of the micellar solutions of some amphiphilic compounds in pure water as determined by absolute small-angle X-ray

99. Kalyanasundaram, K., & Thomas, J. K. (1976). The conformational state of surfactants in the
solid state and in micellar form. A laser-excited Raman scattering study. The Journal of
Physical Chemistry, 80(13), 1462-1473.

28.

and molecular conformations of surfactants in aqueous solution and crystalline states.

102. Tiberg, F., Brinck, J., & Grant, L. (1999). Adsorption and surface-induced self-assembly of
surfactants at the solid–aqueous interface. Current opinion in colloid & interface
science, 4(6), 411-419.

Characterization of Micellar Surfactant Films via Atomic Force Microscopy at a Graphite

of surfactants at electrode surfaces–A molecular view. Surface Science, 603(10-12),
pp.1878-1891.

105. Randin, J.P. and Yeager, E., 1972. Differential capacitance study on the basal plane of
stress-annealed pyrolytic graphite. Journal of Electroanalytical Chemistry and Interfacial

106. Morcos, I. and Yeager, E., 1970. Kinetic studies of the oxygen—peroxide couple on

of pyrolytic graphite and glassy carbon electrodes. Journal of Electroanalytical Chemistry
and Interfacial Electrochemistry, 58(2), pp.313-322.