Final Draft
of the original manuscript:

https://dx.doi.org/10.1098/rsta.2019.0008
La Jument Lighthouse: a real scale laboratory for the study of giant waves and their loading on marine structures

J.-F. Filipot1, P. Guimaraes2, F. Leckler2, J. Hortsmann3, R. Carrasco3, E. Leroy4, N. Fady4, M. Accensi5, M. Prevosto5, R. Duarte1, V. Roeber6, A. Benetazzo7, C. Raoult2, M. Franzetti8, A. Varing1, N. Le Dantec4

1France Energies Marines, Plouzané, France,
2Shom, Brest, France, 3HZG, Geestacht, Germany,
4Cerema, Plouzané, France, 5Ifremer, Plouzané, France
6CNR-ISMAR, Venice, Italy, 7IUEM-LGO, Plouzané, France
Figure 1. La Jument lighthouse, Brittany France (48°25′20.00″N, 5°8′2.28″W). a) in calm wave conditions but with intense spring tide currents causing eddies in the wake of the lighthouse. The substructure added to the lighthouse to solve its early-life stability issues is well visible. b) La Jument in storm conditions. Picture courtesy of Jean Guichard. c) historical plan of La Jument, before the addition of the final substructure. The current elevation above chart datum of the substructure is virtually shown here (14m) as it is a key element for the paper. d) wave rose from the wave climatology presented in the paper (location of the extraction: 48°25′35″ N, 5°7′50″ W, i.e. about 1.2km in the NW of La Jument).

1. Introduction

(a) La Jument lighthouse: context

Offshore lighthouses at sea represent examples of engineering marvels, by the overcoming challenges of constructing robust structures to withstand the extreme environmental loading they have to face for decades or even centuries. Among these environmental forcings, the wave loading generally dominates by far the winds or current actions on the structure. Indeed, because the lighthouses at sea are constructed upon shallow rocky platforms they are exposed to breaking waves responsible for intense and transient forces, also known as "slamming" impacts. During the most extreme storms, breaking waves impacts threaten the lighthouses' structural integrity, which raises the question of the remaining lifetime of these fascinating monuments. Among the threatened offshore lighthouses, La Jument, located offshore of Ushant island, Western Brittany, France (see Figure 1) is one of the most iconic. A series of pictures taken from a helicopter by Jean Guichard, showing the lighthouse keeper opening the door while a giant wave enrolls the substructure is famous worldwide. La Jument's photogenic quality is tightly related to its extreme exposure to North East Atlantic storm waves. These waves that shoal over the very steep foreshore bathymetry may violently break over the lighthouse and generate sea spray that can run up well over the lighthouse lantern (see a helicopter video record available as additional material).

La Jument was completed in 1911 after 8 years of construction. The final structure, 48 m high above Chart Datum (CD), underwent, worrying vibrations during the first strongest winter storms. In 1911 and 1916 two storms were responsible for vibrations so intense that they caused the lantern glass to break and the mercury tank (supporting the Fresnel lens rotation) to overflow, forcing the lighthouse keepers to retrieve the toxic liquid with their bare hands (Fichou et al.[1999]). These incidents pushed the engineers to propose and provide the reinforcement of the lighthouse substructure (see Figure 1). This did not completely stop the waves from damaging the lighthouse. In 1934, three holes were drilled from the substructure to 30 m down to anchor La Jument directly into the underlying rocky platform.

Today, La Jument still faces storm waves and the question of the remaining lifetime of this iconic patrimonial monument is open. The same question, applicable to English rock lighthouses sparked interest in the scientific community. Considerable efforts were conducted through the STORMLAMP project (e.g., Brownjohn et al. [2017, 2018]) to improve the knowledge of the
current mechanical response and health status of different British lighthouses exposed to high seas. Regarding La Jument, Loraux [2013] has addressed the complex question of the remaining lifetime of the structure and the possible reinforcements required to extend it. This in-depth study examined the mechanical structure’s response to impacts of large breakers and showed that the lighthouse behaviour in terms of accelerations, displacements, strains and failures was highly correlated to the characteristics of the breaking waves hitting the lighthouse. However the knowledge of the wave field around La Jument was insufficient at the time of Loraux’s work and he had to rely on a wave climatology produced by a phase averaged spectral wave model to define the geometric and kinematic characteristics of the breaking waves for his extreme loading cases on La Jument. He concluded that dedicated field measurements would be valuable to support his results; this statement was part of the motivation for the experiment that will be described in this paper.

(b) Lighthouses design and breaking waves

The design of any marine structure such as offshore oil platforms, offshore wind turbines, breakwaters or offshore lighthouses, relies among other parameters on the knowledge of the most extreme sea states that the structure will possibly face over its lifetime. The corresponding characteristic 100 or 50-year wave is then used to compute inertia and drag forces based on Morison theory (Morison et al. [1950]). It is now well-acknowledged that in the presence of breaking waves, an additional impact or slamming force should be added. Indeed, at breaking onset, the horizontal fluid velocities at the wave crest reach or even exceed the wave phase speed. At breaking onset, the wave crest (or at least part of it) behaves as a wall of water moving at the wave crest phase speed and its encounter with a marine structure results in a violent impact, yielding a large impulsive force. This breaking wave impact force must be considered in the marine structure design since it can be several times greater than the magnitude of the combined drag and inertia forces, though over a very short time interval (Wienke et al. [2001]). The severity of the breakers and hence the magnitude of their induced force on the structures depends on the type of breaking (e.g., Perlin et al. [2013]); the most gentle ones, known as spilling breakers are initiated by a modest jet located in the direct vicinity of the wave crests, while plunging breakers are characterized by a much larger and more intense jet, enclosing an air pocket during the process of breaking. In addition, irrespective of the breaking type, the stage of the breaking process at impact is an important parameter: namely a broken wave with its highly aerated front face will cause a lower impact force than a wave at breaking onset, featuring a non-turbulent, non-aerated, vertical front face with high fluid velocities in the wave propagation direction [Blenkinsopp and Chaplin, 2011, Bredmose et al., 2015, Ma et al., 2016, e.g.].

When and why waves are breaking remains an open question because the understanding of the wave breaking physics is still poor. For instance, until recently there was no consensus regarding an universal breaking onset criterion for irregular waves. Among the pioneers in this field, Miche [1944] demonstrated that regular waves over a flat bottom are stable until kH/tanh(kd) = 0.88, where k is the wave number, H is the wave height and d is the water depth. In deep water, this leads to the familiar H/L = 1/7 threshold in which L = 2π/k the wavelength of an individual wave. In shallow water Miche breaking limit becomes the so-called "breaker index" H/d = 0.88, while the most widely used value is 0.78 Battjes and Janssen [1978]. Miche theory is not directly applicable to irregular waves propagating over a possibly varying bottom. A paper from Barthelemy et al. [2018] suggests that any deep or intermediate water wave with a ratio orbital velocity at the crest over phase speed greater than 0.85 will inevitably and quickly break (within a fraction of wave period). Preliminary results from Varing et al. [2018] indicate that this breaking limit could be valid in shallow water as well. Shallow water breaking waves have been widely discussed in the literature and as mentioned above, it is well known that breaking onset can be related to the breaker index H/d. Thornton and Guza [1983] showed that at a given location (or water depth) the probability density function of breaking wave height was not a Dirac function but a rather broad distribution. This is due to the stochastic nature of the breaking
occurrence and probably to measurement technique that detects breakers at different stages. In addition to the height of the breakers, the type of breaking controls the magnitude of the wave loads on marine structures. The well known Iribarren or surf similarity parameter (Iribarren and Nogales [1949]), \(\zeta = \frac{\tan \beta}{\sqrt{S_0}} \), with \(\beta \) being the bottom slope and \(S_0 \) being the deep water wave steepness, provides an empirical breaking type classification. For storm waves at La Jument, \(\zeta \) takes values between 2 and 3, typical of plunging waves. This is further consistent with visual observations of storm waves in the vicinity of La Jument. As explained in this paragraph, the knowledge regarding breaking waves statistics and type is still empirical and its application to complex and extreme hydrodynamic conditions found at La Jument is somewhat cumbersome. This stresses the importance of collecting direct and detailed observations of breaking waves on this site.

Because of the associated short impulsive force, breaking waves can excite specific structural modes of marine structures including lighthouses or offshore wind turbines. For instance, Hallowell et al. [2016] noted that only breaking waves were able to excite the second mode of oscillations of a 2 MW fixed offshore wind turbine deployed at the Blyth wind farm (United Kingdom). Chella et al. [2012] reported that the large remaining uncertainties in the design of offshore wind turbines are connected to our lack of knowledge of the breaking waves loading. The pioneering work from Von Karman [1929] assimilated the effect of a breaking wave to the impact of a cylinder falling and hitting the water surface. Later, Goda and Kakizaki [1966] concluded that the breaking-induced wave force on a vertical cylinder is due to the change in momentum in the water mass. More recently, Wienke and Oumeraci [2005] proposed the following expression for the time evolution of the slamming force induced by a breaker over a vertical cylinder:

\[
F(t) = \lambda \eta_c \rho_w R V^2 \left(2 \pi - 2 \sqrt{\frac{V}{R}} t \tanh^{-1} \sqrt{1 - \frac{V}{4R} t} \right), \quad (1.1)
\]

for \(0 \leq t \leq R / 8V \),

\[
F(t') = \lambda \eta_c \rho_w R V^2 \left(\pi \sqrt{\frac{V}{6R t'}} - \left(\frac{8V}{3R t'} \right)^{1/4} \tanh^{-1} \sqrt{1 - \frac{V}{R t'} \sqrt{\frac{6V}{R t'}}} \right), \quad (1.2)
\]

for \(\frac{R}{8V} \leq t' \leq \frac{12R}{32V} \), with \(t' = t - R / 32V \).

The parameters controlling the intensity and time distribution of the impact force are therefore \(\eta_c \), the elevation of the crest above the mean sea level, \(\lambda \) the curling factor that gives the portion of the crest impacting the structure, \(V \) the orbital fluid velocity in the crest, \(\rho_w \) the water density and \(R \) the radius of the cylinder. This formulation was carefully validated with a number of wave flume experiments reproducing the impact of breaking waves on a cylinder and is used in design standards for offshore marine structures (see for instance: IEC [2009] for application to offshore wind turbines). Though the relevance of considering breaking waves for design purpose, the impact forces might also be considered for fatigue computations especially in shallow water environment (such as La Jument) where breaking waves are frequent (DNV [2014]). From equations 1.1 and 1.2 it appears that the geometric and kinematic properties of the breaking waves (i.e. the parameters \(\eta_c, \lambda \) and \(V \)) determine the magnitude and time evolution of the slamming force. Unfortunately, it is very difficult, if not impossible, to infer the characteristics of the breaking waves at the moment of their impact from a typical wave climatology that usually provides integrated wave parameters computed at several hundreds meters away from the structure.

(c) Objectives of the paper

In this paper we shall try to provide a description of the hydrodynamic conditions at La Jument with a focus on the breaking waves impacting the lighthouse during storm events. The first part of the paper describes the storm waves, current and structure acceleration observations and bathymetric data collected from or around this lighthouse during winter 2017-18. The second
part of the paper focuses on a particular storm event on January 3, 2018 marked by a strong and transient acceleration and displacement peak in the lighthouse at 9:42:07 AM UTC, induced by a giant breaker slamming over La Jument. A discussion follows on the characteristics of this wave to elucidate why it produced considerably higher accelerations and displacements of the structure compared to the other large waves of the same storm event.

2. Hydrodynamic climate around La Jument

The lighthouse is located in a macro-tidal environment. Tidal observations were recorded in 2013 by SHOM in the Lampaul bay (5°06′W, 48°27′W) and were analyzed in SHOM [2017]. The tidal range is 7.68 m and mean level is 4.13 m Chart Datum (CD). Harmonic analysis on water elevation was also computed and tidal predictions from them are used in the paper. The tidal currents around La Jument can exceed 2 m/s and have a complex horizontal distribution (see figure 3). An analysis of the extreme statistics at La Jument was produced based on the 23 years (1994-2016) of the hindcast database HOMERE (Boudière et al. [2013]). The selected model point (48°25′35″ N, 5°7′50″ W) for the extreme statistical analysis is located NW of La Jument, about 1260 m away from the lighthouse. At that location the water depth is 39 m with a tidal range of 6.8 m. A blockmax method with a block duration of one month was used to estimate the distribution of the yearly maximum water level. The fit on the monthly maxima by a Gumbel distribution gives 11.8 m for a return period of 10 years. The significant wave height, H_s, and current speed, C_s (only tidal current in HOMERE) are not correlated. The dominant directions of waves for $H_s > 9$ m are 250°-300° (approximately WSW to WNW).

<table>
<thead>
<tr>
<th>Return values</th>
<th>most severe event</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_s (m)</td>
<td>T_p (s) D_p (°) U_{10} (m/s) $U_{10,d}$ (°) C_s (m/s) C_d (°)</td>
</tr>
<tr>
<td>10y</td>
<td>11.8 12.7 13.9 14.7 12.7 17 -66 21.3 -78 0.79 146</td>
</tr>
<tr>
<td>20y</td>
<td>12.2 12.7 13.9 14.7 12.7 17 -66 21.3 -78 0.79 146</td>
</tr>
<tr>
<td>50y</td>
<td>12.2 12.7 13.9 14.7 12.7 17 -66 21.3 -78 0.79 146</td>
</tr>
<tr>
<td>100y</td>
<td>12.2 12.7 13.9 14.7 12.7 17 -66 21.3 -78 0.79 146</td>
</tr>
<tr>
<td>U_{10} (m/s)</td>
<td>27.2 28.3 29.4 30.0 9.9 13.5 -82 29.4 -70 0.33 131</td>
</tr>
<tr>
<td>C_s (m/s)</td>
<td>0.92 323</td>
</tr>
</tbody>
</table>

Table 1. Extreme Wave/Wind/Current statistics from HOMERE database, H_s is the significant wave height, U_{10} and $U_{10,d}$ are the 10m-high wind speed and direction, T_p and D_p are the peak period and direction of waves, C_s and C_d are the current speed and direction.

3. Description of the field experiment

(a) La Jument experiment

(i) Context

This experiment was performed within the frame of the DiMe project dealing with the characterization of extreme breaking waves for the purpose of survivability design of Marine Renewable Energy devices such as fixed or floating wind turbines or wave energy converters. Because the observation of extreme sea states is cumbersome due to the obvious hazards faced by any instruments deployed in stormy seas, little is known about their characteristics and especially regarding their breaking properties (e.g. statistics of occurrence, breaking type). This motivated the acquisition of oceanic storm wave observations with a focus on the breaking waves.

La Jument lighthouse was chosen for the study of extreme breaking sea states for the following reasons:

(i) The lighthouse lies over a rocky platform that drops abruptly on its western boundary
(ii) The upper deck of the lighthouse is located at about 42 m above the chart datum, making possible the observation of very high sea states in intermediate to shallow waters with a large field of view and a minimal shadowing effect.

(iii) Its high location provides a (relative) shelter from the extreme sea states for onsite remote sensing instruments.

(iv) An analysis of the HOMERE database (Boudière et al. [2013]) shows that the 10-year significant wave height at La Jument (in 50 m depth) is equal to or larger than the 100-year significant wave height of most of the French Channel and Atlantic coastline.

(v) In the meantime a parallel experiment had been planned to measure the acceleration of the lighthouse under storm wave impacts, based on the recommendations of Loraux [2013].

The connection between the storm waves field experiment and the acceleration measurements appeared to be relevant and motivated the writing of the present paper.

(ii) Instruments deployment

The deployment of an X-band radar, Stereo-Video Imagery system (SIS) and four accelerometers on La Jument took place on December 5 and 6, 2017. Because the access to the lighthouse by sea is hazardous, especially in winter, we relied on the civilian security helicopter to reach La Jument. Previously, a wave buoy and a current profiler were moored in the winter by the French Naval Hydrographic and Oceanographic Service (Shom) to independently measure the offshore wave field and current vertical profile. Finally, a bathymetric survey was performed in July 2018 to improve the knowledge of the water depth around the lighthouse. In the next section we will be described the instrumental setup involved in this field experiment.

(iii) Stereo video system

The stereo-video cameras were mounted on each side of a hut located just below the lantern and looking approximately 246° N. The Stereo Imagery System (SIS) used in this experiment consists of a pair of synchronized 5 Megapixel (2048x2456 pixels) BM-500GE JAI cameras, with 5 mm and wide angle lens. The cameras synchronization was done by a trigger inside of the left camera case, the maximum difference between the two cameras records were of the order of O(10^{-5}) seconds. The configuration of the lighthouse imposed a maximum camera separation (baseline) of 5.44 m. The stereo images acquisition rate were set at 10 Hz and time stamped thanks to a GPS time server. The cameras were deployed at about 42 m above the chart datum and equipped with sprinklers and wipers enabling to clean them before each acquisition and during extreme sea states conditions. This system collected 7 TB of storm waves, corresponding to about 35 hours of observations between December 6, 2017 and January 15 with significant wave height reaching 10.5 m. The sea surface reconstruction method used follows the methodology presented by Benetazzo [2006] and Leckler [2013] implemented in the WASS (Waves Acquisition Stereo System) code version 1.4, from Bergamasco et al. [2017].

The sea surface area covered by the stereo video images and the surface resolution mostly depends on the experimental setup, local brightness and sea level position. The expected accuracy of the stereo observations was derived using the formulations of the quantization error from Rodriguez and Aggarwal [1990]. For the present stereo setup, the expected quantization error is represented by the root-mean-square (RMS) errors along the x-, y-, and z-axis. This set-up allowed to capture the wave field at 50 m from the base of the tower up to 250 m offshore, with a RMSx = 0.14 m, RMSy = 0.35 m and RMSz = 0.09 m.

The main source of error observed in the system was related to the correlation around the breaking events. Breaking waves form bright patches over darker surface water, sometimes resulting in strong brightness gradients that disturb the reconstruction process. The correlation around the foam patches was improved by Leckler [2013], however this still one of the main restriction in the stereo-video reconstruction. Therefore the analysis of the wave field in the
direct vicinity of the lighthouse was performed with extra care because of the presence of larger breakers.

(iv) X-band marine radar

All radar data used within this study were acquired by a 12 kW marine radar, operating at X-band (9.3 GHz) with vertical polarization in transmit and receive modes (VV-pol). The radar was mounted at a height of about 43 m above mean sea level and run in a rotational mode covering a range of roughly 3260 m at 0.5 Hz around the lighthouse (red circle in Figure 2). The radar was operated with a pulse length of 50 ns, which resulted in a range resolution of 7.5 m. The antenna had a vertical beam opening of 21° and a width of 7.5 feet (2.3 m) giving an azimuthal resolution of approximately ∼ 0.9°. The radar was run with a pulse repetition frequency of 2 kHz and the backscattered signal operated through a linear amplifier and then was digitized with 13 bits.

Within this experiment the X-band marine radar was used to observe ocean waves in space and time. This allows the measurement of the 2D wave spectra from which parameters such as the peak wave direction and peak wave period can be determined [Borge et al., 1999, Carrasco et al., 2017]. In addition the radar data gives surface wave properties such as wavelength and phase velocity, which in turn enable to retrieve the surface current vector Senet et al. [2001], Huang et al.[2016]. The surface currents measurements result from the difference between the observed phase velocity and that given by the linear dispersion relation of surface gravity waves, which is given

$$\omega(k) = \sqrt{gk \tanh(kd) + k \cdot U = \omega_0(k) + k \cdot U} \quad (3.1)$$

were k is the wave number vector, ω and ω₀ the relative and absolute wave pulsation, g the gravitational force, d the water depth and U the two-dimensional near-surface current. A detailed description of the methodology utilized in this study to extract the surface current fields is described in [Streer et al., 2017]. An in depth validation of surface currents retrieved by marine radars showed a root mean square error of < 0.04 m/s [Lund et al., 2018].

(v) Accelerometers

The 4 accelerometers RECOVIB-IAC-A03 were firmly mechanically fixed inside the lighthouse at four different heights: 20.6, 31.1, 38.7 and 45.6 m above the chart datum. The highest one is installed on the steel structure that supports the lens close to the top of the lighthouse while the 3 remaining are mounted on the inside masonry of the lighthouse. These accelerometers are able to measure accelerations in the range +/- 2g (with g the gravity acceleration) outputting a current from 4-20 mA. They embed a low-pass filter of 1st order with an upper frequency limit of 1000 Hz (-3dB). The accelerometers were wired to a data acquisition system which is independent of the one used for Radar and Cameras but synchronization with the wave observations was still possible thanks to a GPS time stamping. The power consumption of this systems was very low compared to the other devices deployed for the experimentation so that it was possible to record all the data along the winter. The data acquired at 5 kHz were stored in the lighthouse in a dedicated hard drive and transferred on an hourly basis to the mainland to allow preliminary analyses without physical access to the lighthouse.

(vi) Bathymetric campaign

Bathymetric information was lacking in the immediate vicinity of La Jument, even though it was critical for understanding and modeling wave propagation and wave breaking around the lighthouse. Water depth close to the lighthouse is beyond bathymetric Lidar capabilities due to the steep seabed slope near the lighthouse, and the strong tidal currents and high waves make this zone of rocky shoals very difficult for marine navigation (numerous shipwrecks). To fill the lack of high resolution bathymetric data in the vicinity of La Jument, we conducted a field campaign in July 2018, with the research vessel (R/V) "Albert Lucas". The hydrographic survey was carried out with a shallow-water multibeam echosounder (MBES) Kongsberg EM3002 (high-resolution
A 300 kHz MBES system) coupled with a hull sound velocity sensor (H-SVS) Valeport miniSvS, an inertial measurement unit (IMU) IxSea Octans3000 and a global navigation satellite system (GNSS) Astech ProFlex500. Sound velocity profiles (SVP) were carried out with an AML BaseX equipped with sound velocity and pressure sensors of model Xchange. The GNSS navigation was processed according to the post processed kinematic (PPK) method with Novatel GraNav software and the multibeam soundings were edited with QINSy software, in order to provide a 2-m grid digital terrain model.

(vii) Wave and current in-situ measurements

To complete the field campaign, one directional Datawell waverider wave buoy and an acoustic wave and Nortek AWAC current profiler were deployed in the vicinity of the lighthouse on November 27, 2017. The wave buoy was located about 3 km away from the lighthouse (510.410’W, 48°25.131’N) in the western direction, at 92 m depth and at the limit of the radar coverage (see figure 2). The wave buoy was deployed on November 27, 2017 and recorded until March 3, 2018. The current profiler was deployed at 59 m depth Chart Datum, about 300 m away from the lighthouse (508.196’W, 48°25.284’N) in the SW direction, at the limit of the video-system reconstruction area (see figure 2). The AWAC stopped its acquisition on February 1st, 2018 and was found seriously damaged on the inter-tidal area on the North shore of Ushant island two months later. The analysis of the data revealed that the instrument was not stable on the bottom with tilt values of up to 40 degrees due to ebb currents. Accordingly, we kept only the data acquired in the tilt validity range given by the instrument manufacturer. More than 60% of the AWAC records were removed, mainly during ebb tides.

4. Results

(a) Bathymetry

Figure 2 shows the bathymetry surrounding La Jument. The lighthouse stands on a promontory that is always submerged except during low spring tides. Our high-resolution bathymetry reveals with greater details the densely-fractured bedrock on the barren platform that is extending 2 to 3 km away to the west and south of the lighthouse. Except for the area north of La Jument, as well as in the bedrock fractures, there is no sediment cover on the granitic bedrock, consistent with high-energy hydrodynamic conditions. Secondary fractures also occur oblique to the main fault orientation. The dense network of fractures yields a rather chaotic seabed relief with large blocks separated by deep incisions. The waves that we will describe in the rest of the paper are propagating approximately from WNW, hence will advance towards the lighthouse over this indented topography. The bathymetry data collected here are therefore of primary importance when examining the wave physical processes (refraction, shoaling and breaking) that will control wave loads on La Jument.

(b) X-band radar observations

The marine radar, which retrieved current fields from January 3, 2018 between 08:15 and 10:30 AM UTC, are shown in Figure 3. Each current map results from approximately 15 minutes of radar data. The window size for the retrieval of each current vector is 480 × 480 m and adjacent cells are overlapping by 50%, which leads to one current vector every 240 m. For the current field retrieval only wavelengths between 15 and 100 m were considered, which give access to the mean current in the upper 7 m. Figure 3 shows the current field at different instants close to the time of the waves and accelerations records that are discussed in detail in the rest of the paper. It reveals a complex horizontal distribution of the current field with velocity magnitude reaching 1.8 m/s over the domain of interest and about 1 m/s in the area covered by the SIS of La Jument at the
Figure 2. Bathymetry around La Jument. Top left panel: global view, La Jument position is marked by the red dot. The blue and green squares display the location of the Datawell wave buoy and AWAC current profiler. The red circle indicates the domain covered by the X-band radar. The bold black line shows the area covered by the bathymetric survey conducted in the project and the black straight line corresponds to the profile presented in the lower panel. Top right panel: zoom on La Jument bathymetry. The green square is the AWAC position and the dashed yellow line encloses the stereo video reconstruction domain. The blurred area corresponds to pre-existing bathymetric data. Bottom panel: shows a schematic bathymetric profile between lighthouse (red vertical bar on the right) and Datawell buoy (blue square on the left). The yellow line on the surface represents the stereo video field of view and the green square is the AWAC position. The profile is in Lambert93 coordinate system, in a metric scale.

time (09:47:30 UTC, third panel of figure 3) close to the wave event considered in the rest of the paper.

(c) Wavebuoy observations

The wavebuoy provided wave spectra every 30 minutes from which integrated wave parameters were extracted. Strong currents caused the buoy to malfunction episodically, the corresponding data were filtered out for the analysis. Figure 4 display the time history of the significant wave height H_s which shows intense storm waves with H_s values close to 10 m as for instance the storm event of January 3-4, 2018 that is studied in the present paper. During storms event, typical peak period and wave direction values are about 15 s and 270° N respectively.

(d) Stereo video observations

Due to technical issues, the SIS stopped working from January 15, 2018. During it operation phase the SIS capture several wave record in storm conditions with significant wave height ranging from 7.5 to 10.5 m (see table (d)).

An analysis of the SIS surfaces for the record of 09:39 AM on January 3, 2018 (that will be analyzed in more details later) revealed some interesting features about the rogue waves occurrence in the vicinity of the lighthouse. For this analysis, only wave components of frequency
Table 2. Summary of the storm records captured by the SIS during the field experiment. The date marks the time when the SIS acquisition starts (duration: 30min each). The significant wave height (H_s) and peak wave period (T_p) for each event is measured by the stereo video system, the peak wave direction (D_p) is that of the Datawell (i.e., without the bathymetry effect), the mean current speed (C_s) is measured from the X-band radar and the wind speed at 10 m height (U_{10}) is estimated using the wind hindcasts from European Centre for Medium-Range Weather Forecasts (ECMWF) for La Jument location.

<table>
<thead>
<tr>
<th>Date</th>
<th>H_s [m]</th>
<th>T_p [s]</th>
<th>D_p [°]</th>
<th>C_s [m/s]</th>
<th>U_{10} [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/01/2018 09:39</td>
<td>10.03</td>
<td>13.3</td>
<td>279</td>
<td>0.77</td>
<td>17.9, W</td>
</tr>
<tr>
<td>03/01/2018 10:30</td>
<td>10.51</td>
<td>15.4</td>
<td>278</td>
<td>0.69</td>
<td>15.5, W</td>
</tr>
<tr>
<td>03/01/2018 11:09</td>
<td>8.33</td>
<td>12.5</td>
<td>282</td>
<td>0.36</td>
<td>15.5, W</td>
</tr>
<tr>
<td>03/01/2018 11:54</td>
<td>9.63</td>
<td>12.5</td>
<td>281</td>
<td>1.08</td>
<td>15.5, W</td>
</tr>
<tr>
<td>04/01/2018 09:40</td>
<td>7.34</td>
<td>11.1</td>
<td>279</td>
<td>0.65</td>
<td>15.0, W</td>
</tr>
<tr>
<td>04/01/2018 10:45</td>
<td>7.18</td>
<td>10.5</td>
<td>286</td>
<td>0.79</td>
<td>14.7, W</td>
</tr>
</tbody>
</table>

higher than 0.5 Hz were selected, thus removing sparse spikes close to the poorly-matched areas. Following the standard procedure, the dataset was analyzed by splitting the sea surface region and the time interval in adjacent and non-overlapping subrecords [Benetazzo et al., 2018]. To this end, we have selected fourteen space-time regions V_s (with $s = 1, 2, \ldots, 14$) of same area $A_s = 12920$ m2 and duration $D_s = 50$ s in order to produce independent realizations of the random variable maximum crest height defined as $C_m = \max (z(x, y, t) | (x, y, t) \in V_s)$. As a result, the observed values of C_m range between 1.04 H_s and 1.76 H_s (on average $C_m = 1.31$ H_s), and seven individual waves can be classified as rogue as they meet the classic criterion $C_m > 1.25H_s$ [Draper, 1964]. Two single waves exceeded 1.7 H_s (for comparison, the Draupner wave reached 1.55H_s), the highest one, observed at about 80 m in the SW of the lighthouse, peaked at 17.7 m above the mean sea level and had crest-to-trough height of about 24 m. Compared to typical open ocean waves, all crests are very steep (the crest-to-trough half-period is about 0.4T_p) and are accompanied by rounded and shallow troughs, such as the ratio between the lowest trough and the highest crest is 0.3, on average. These analysis performed on the SIS surfaces indicate that the occurrence rates of rogue waves at La Jument were higher than expected for deep water waves possibly due to wave interaction with the bottom and or with the current field.
Figure 4. Time series of the significant wave height H_s, peak period, T_p, and peak wave direction, D_p measured by the offshore wave buoy moored during winter 2017-18.

(e) Accelerometer observations

The goal of our experiment was to investigate the relation between the incoming wave field and the mechanical loading felt by the tower in a wave-by-wave framework. To achieve this, we focused our efforts toward a deterministic comparison between the waves captured by our Stereo Imaging System (SIS) and of the accelerations measured inside the lighthouse. One particularity of this experiment is the synchronization of the acceleration and SIS acquisition system (through the use of a time server, Galleon NTS-6002-GPS time server, accuracy 1µs) that enabled us to connect a peak in acceleration to a wave captured by the SIS. Because of the slender geometry
of the lighthouse, the accelerations induced by waves are larger at the top than near the base of the lighthouse hence the signal-to-noise ratio of the highest accelerometer is more favorable to examine the effect of waves on La Jument’s mechanical response. For this accelerometer, the x-axis is pointed 214°N and the y-axis 124°N.

Figure 5 presents a sample of synchronized elevation and accelerations time series that were collected on January 3 between 09:39:38 and 10:09:38 UTC, containing the largest acceleration peak captured during the January 3-4, 2018 event. For our analysis we extracted the wave elevation data from P_{SIS} the nearest point from the lighthouse, located at $X=99250$ m, $Y= 6844500$ m, (see Figures 7 and 8) hence about 50 m away, SW of La Jument. Unfortunately, The white waters generated by breaking waves at the base of the lighthouse prevent any reliable stereo reconstruction closer to the structure due to a lack of texture in the images.

![Figure 5](image)

Figure 5. First panel, 30 min elevation time series for January 3 2019 (starting at 09:39:38 UTC) extracted from point (X=99250m,Y= 6844500m) in the stereo images of Figures 7 and 8, the horizontal dashed line show the 8 m-elevation threshold used to select the individual waves studied in the paper. Second and third panel: accelerations along x and y axes for the same record measured by the highest accelerometer in the tower. The signal noise was filtered out using a Butterworth filter with a cut-off frequency of 50 Hz.

The horizontal displacements of the tower can further be computed from the acceleration records by double integration in time and is a better proxy to measure the possible structural damages since it is related to the strains in the structure as reported in Loraux [2013]'s study on La Jument. For the largest acceleration peak (about $3m/s^2$ in the x-direction and $2m/s^2$ in the y-direction) measured around 9:42:07 AM on January 3, the horizontal displacement reached a peak value of about 45 mm, a value several time higher than the other acceleration events presented in Figure 5. This acceleration and displacement peak is related to an extreme wave (hereinafter referred to as "wave1"), 19 m high with a crest elevation reaching 12.9 m at location P_{SIS}. In the next section we will explore why this particular wave induced such an intense impact on La Jument.
Figure 6. Examples of stereo video 3D surface elevation map $z_i(R, jR, t)$ plot over its corresponding right camera bitmap image in the pixel reference system. The colorbar shows the sea surface elevation and ranges from -15m (blue) to +15m (red) above the Mean Sea Level computed at the time of the record. The sequence of images shows an extreme breaking event (referred to as wave1 in the paper, corresponding wave height: 19.0 m). The reconstruction area was reduced in this illustration to highlights the breaking areas.

(f) Focus on one extreme slamming wave

Video images of wave1 show a water vertical excursion consecutive to the wave slamming on the lighthouse that washed up the video cameras located about 41 m above the sea level (at that instant). This is illustrated by Figure 6 showing the evolution of wave1 before and during the breaking process. Unfortunately the stereo-video images do not give access to the impact zone of the wave on the structure as the video images do not cover the base of the lighthouse and because the white waters in the immediate vicinity of the lighthouse make stereo reconstruction inaccurate. A careful visual analysis of the other video records (see table (d)) revealed that no other wave caused such water runup. In the following section we compare wave1 to 7 over waves from the same SIS record, whose crest elevations exceed a threshold set at 8 m above Mean Sea Level. We chose to select our subset of high waves based on their crest elevation, η_c, instead of their trough-to-crest height because η_c appears to be a key parameter in the formula of Wienke and Oumeraci [2005] used to compute wave impact forces on slender bottom-mounted vertical-cantilever type marine structures (see equations 1.1 and 1.2).

(i) Spatial wave properties analysis

Here we shall use a combination of the video images and of the stereo-video reconstruction to obtain a better description of the high waves of interest at the base of the lighthouse. The strength of the stereo-video system compared to other traditional point in situ wave instruments is of course its ability in providing spatio-temporal information on the wave field. Figures 7 and 8 display snapshots of the sea surface capturing the spatial signature of the 8 high waves selected above. The photographs of these waves (figures 7 and 8, left panels) indicate that they were all breaking at the base of the lighthouse. Compared to the others, wave1 appears to have strong variation of the along-crest elevation, with high elevations concentrated close to the
Figure 7. Description of the 8 high waves selected for our study (4 in this Figure and 4 in figure 8). Left panels: video images, middle panel reconstructed wave surfaces projected in a Lambert93 geographic system overlaid over iso-contours of water depths (the black dots show the extraction point of the time series analysed in the paper) right panels: time series of the high waves elevation, collected at x=99250m, y=6844500m from the stereo video reconstruction.

lighthouse. Snapshots of wave1’s nonlinear evolution towards breaking is available in figure 6, and animations of the wave surfaces overlaid over the video images can be analyzed to further understand the breaking process at the base of the lighthouse (these videos are available as supplementary material, the reconstruction area was reduced in these video to highlight the breaking areas). It reveals that when the wave crest is approaching the structure, a fast flow towards the crest appears and seems to be associated with the birth a secondary jet just below the main crest. Finally both crests merge into one that violently overturns. The figure 8.6.a also shows a good illustration of the secondary jet generation.
(ii) Time series analysis

We analyzed the same surface by extracting a 30 min time series of the sea surface elevation recorded at PSIS, for the same SIS acquisition (starting at 09:39:38 UTC). With this elevation time series, we pursue our investigations of the 8 high waves properties. Superposing the individual waves on a single plot shows time profile similarities between the 8 high waves selected in terms of vertical and horizontal asymmetries. Some of the characteristics of these waves are listed in table 3.

Such similarities in the wave profile of high waves were already discussed for deep water waves by Phillips et al. [1993] and Phillips et al. [1993] who proved that for Gaussian sea states, the profiles of the highest waves were self similar and follow the shape of the auto-correlation function of the full wave field. The 8 high waves studied here are all skewed: the crests being much higher that the troughs and asymmetric: the front face being significantly steeper than the back face. Most of them are followed by a secondary crest. Table 3 and figure 9 demonstrate that wave1
Table 3. Crest, η_c and trough η_t elevation, wave height H, and half period $T_{1/2}$ (duration between front trough and crest) for the 8 individual waves studied in the paper.

<table>
<thead>
<tr>
<th>wave</th>
<th>η_c [m]</th>
<th>η_t [m]</th>
<th>H [m]</th>
<th>$T_{1/2}$ [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>wave1</td>
<td>12.9</td>
<td>-6.1</td>
<td>19.0</td>
<td>2.0</td>
</tr>
<tr>
<td>wave2</td>
<td>8.5</td>
<td>-4.1</td>
<td>12.6</td>
<td>4.6</td>
</tr>
<tr>
<td>wave3</td>
<td>8.3</td>
<td>-3.4</td>
<td>11.7</td>
<td>2.9</td>
</tr>
<tr>
<td>wave4</td>
<td>11.2</td>
<td>-4.0</td>
<td>15.2</td>
<td>2.8</td>
</tr>
<tr>
<td>wave5</td>
<td>9.2</td>
<td>-4.0</td>
<td>13.2</td>
<td>2.9</td>
</tr>
<tr>
<td>wave6</td>
<td>8.9</td>
<td>-3.7</td>
<td>12.6</td>
<td>2.2</td>
</tr>
<tr>
<td>wave7</td>
<td>10.3</td>
<td>-5.3</td>
<td>15.6</td>
<td>2.4</td>
</tr>
<tr>
<td>wave8</td>
<td>8.0</td>
<td>-3.2</td>
<td>11.2</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Figure 9. Comparison between wave1 (black) and the 7 other high waves for the record of January 3, 2018 at 9:39 UTC. The grey bar indicated the altitude of the lighthouse substructure (see figure 1) above the sea level at the time of the wave record. The vertical extent of the bar corresponds to the water level change over the 30 min of the record.

has the highest crest (12.9 m) with a shallow preceding trough (-6.1 m) and the largest individual wave height (19.0 m). The second highest wave (wave7) has a wave height reaches 15.6 m but with a lower wave trough (-5.3 m) and lower crest (10.3 m) than wave1. At the studied location (P_{SIS}) the time separating the preceding trough and the crest of wave1, which can be linked to the front face geometric steepness is only 2.0 s, the lowest value among the different waves. The record of the back trough of wave1 is dominated by noise because of the water spray induced by the wave slamming that blinded the video cameras and corrupted the reconstruction for a short period of time. On figure 9 the grey bar indicates the elevation of the top of the lighthouse substructure, the bar thickness quantifies the water level variation over the time period of the wave record, namely the water level dropped by 42 cm during the 30 min wave record considered. Measurements of a tide gauge from the French Naval Oceanographic and Hydrographic Service (Shom) collected at Le Conquet harbour (25km to the ESE of La Jument) show storm surge values around 0 cm at 10:00 AM UTC the same day. We assumed here that the storm surge at La Jument can be neglected in our analysis. Figure 9 indicates that the crest elevation of wave1 measured at P_{SIS} is the only
one crossing the substructure elevation level. We advance that this is a plausible explanation for the acceleration peak found for wave1 only. Since La Jument’s tower is much more flexible than the substructure itself (Loraux [2013]) the mechanical response to wave slaming impacts on the tower may be significantly more intense and may translate into much larger accelerations and displacements than those due to waves impacting the substructure only. This would explain why waves with slightly lower crest elevations, such as wave7, produced horizontal accelerations and displacements of the top of the structure one order of magnitude lower than wave1. Of course, it is difficult to be fully conclusive regarding the actual elevation of the crest right at the lighthouse, from considerations derived from observations collected at 50 m away from the structure. As reported earlier in the paper, the elevation can change significantly along the crest over distances of O(50m) (see figure 7, 8, central panels). Because of the white water the near wave field (closer to 50 m in the up-wave direction) was not accessible from the SIS data. To fill the gap between the lighthouse and the edge of the SIS surface we operated BOSZ, a phase-resolving Boussinesq-type model for the computation of nearshore waves (see for example Roeber et al. [2010], Roeber and Cheung [2012], Roeber and Bricker [2015], Li et al. [2018]) that solves the equations based on a conserved variable formulation of Nwogu [1993]. Animations of the wave transformation in the vicinity of the lighthouse are available as additional material. The computation of the wave field around the lighthouse of La Jument is based on a 2.7 km by 2.5 km domain composed of a Cartesian grid of uniform 7.5 m by 7.5 m. The input wave spectrum comes from the wave buoy at the time of interest, i.e., Jan 3, 2017 at 9:30 am.

As shown on Figure 10, the wave field shows strong convergence in close proximity to the lighthouse with \(H_s \) values 50% higher than the observed offshore conditions. This suggests that, statistically speaking, wave height may be higher at the base of the lighthouse than at \(P_{SIS} \), though the reflection of the wave field on the substructure likely contributes to this local wave height increase. However, even with this additional information, it is not possible to draw definitive conclusion regarding the elevation of wave1’s crest on the structure since there is no guarantee that the observed statistical increase in \(H_s \) systematically results in higher individual wave crests.

Fortunately, a series of pictures of wave1 taken from Ushant Island supports our findings. These improbable but highly valuable pictures are available in Denarié [2019] and present the detail sof wave1’s impact on La Jument (for the review stage, a picture is available as additional material). These pictures confirm that wave1 crest elevation was high enough to cause an impact above the substructure, i.e., directly on the tower. Two pieces of evidence match to relate the pictures to wave1: the correspondence of the time stamps is less than 2 min (probably due to inaccuracies in the camera clock) and wave1 was the only wave in our records of January 3, 2019 that caused sea spray up to the stereo-system. This finding confirms the numerical results of Loraux who reported that breaker impacts on the substructure alone, do not produce any significant accelerations on La Jument (see figure 46 in Loraux [2013]). The substructure built several years after the lighthouse’s erection plays therefore a double role: it adds stiffness to the initial lighthouse tower and protects it from the assaults of most of the breaking waves.

5. Discussion

The paper introduces a broad spectra of observational and model data that we used to provide a better understanding of the complex hydrodynamics in the vicinity of La Jument. However, the coming discussion will focus on the wave-acceleration study performed in the previous section.

The first analysis presented here examined a particular stereo-video record featuring a large breaking wave (wave1) that induced significant horizontal accelerations and displacements in the tower and caused water spray that reached up to the video cameras. As mentioned in the introduction, the mechanical response of La Jument under extreme waves was addressed in detail by Loraux [2013] who simulated the loading of a series of three waves with characteristics based on the estimation of 50 to 100-year return period waves, combined with varying tidal level. The horizontal acceleration and displacement caused by wave1 (looking at the x-axis) is of the same
order or magnitude as the values report by Loraux [2013]'s numerical experiment, though his largest numerical wave (22 m high with crest elevation of 18 m) combined with a 8.5 m CD tidal level, (50 cm above the highest astronomic tide and 6.5 m below the substructure top) yields an horizontal acceleration peak above 20 m/s2. Loraux further found that the horizontal displacements (up to 2 cm) were highly correlated to the duration of the impact pressure load.

We should stress here that the waves studied in our paper correspond to a severe but not extreme storm: indeed the significant wave height of 10.5 m is a wave event with a 2-year return period. In addition, the tide level was low (1.15 m CD in average over the 30 min record) which places the water level 12.85 m below the top of the lighthouse substructure. Even in these "adverse" conditions, our instruments captured a wave able to hit the lighthouse’s upper tower causing notable vibrations (double integration in time yields horizontal displacements of about 45 mm at the top of La Jument). This advocates for more observations in stronger sea states with different water levels to accumulate more acceleration data synchronized to wave observations. This would further help understanding the relation between the wave characteristics in term of wave height, period and direction, the water level and the tidal currents on the impact magnitude on the structure. A larger subset of high waves reaching the tower would be necessary to examine what other properties (e.g., breaking type, breaking stage, angle of attack, fluid velocities in the crest) are important, beyond the crest elevation. In addition, since the stereo-video domain does not cover the last 50 m of wave propagation, additional sensors would be helpful in capturing
the elevation of the wave impact on the structure. Numerical efforts to represent the 3D geometry and fluid velocities of the impacting crest would also help in the cross interpretation of the wave characteristics especially regarding the distribution of the orbital velocities and their role in the impact process.

The acceleration records have only been briefly addressed in the paper and served just as markers of the wave slamming severity. These observations deserve a dedicated study, especially regarding their spectral contents that would provide important information about the stiffness of La Jument, hence its structural health and remaining lifetime.

We hope to further investigate the scientific questions raised in this discussion thanks to the extension of the field experiment over several winters and the addition of five pressures sensors, one on the substructure and four on the lighthouse tower, spread over three faces of the octagonal structure. We hope they will provide further information regarding the relation between impacting wave properties and the magnitude and time history of the pressure loads.

6. Conclusion

In this paper we present observation from a field campaign designed to improve the description of the extreme wave loads on one of the most iconic lighthouse in France, if not in the world. The dataset, collected during winter 2017-18, contains storm waves and wave-synchronized acceleration data together with tidal current measurements and a high resolution bathymetry. The dataset features several records with significant wave heights about 10 m for two of them and giant waves reaching 24 m high.

In the paper, we focused our analysis around an intense and isolated horizontal acceleration and displacement burst and showed that it is due to a 19 m-high breaking wave. Our work suggests that this particular wave (wave1) carried a crest high enough to pass above the substructure and reach the lighthouse tower. A series of photographs of wave1 taken from Ushant island, support that the crest hits the concrete belt covering the lower part of the tower (Denarié [2019]). This indicates that the water level during storm events controls the frequency of strong acceleration peaks since the lighthouse substructure acts as a high pass filter for the wave crests. We hope that this ongoing field work will help in quantifying the remaining lifetime of La Jument through a finer description of the incoming waves and of their effect in terms of mechanical loading on the structure. This experiment could further bring insight regarding the loads of breaking waves on other marine structures installed on top of a steep slope such as breakwaters.

La Jument is a heritage iconic structure, part of Brittany’s culture and known all over the world. Putting aside its role in the navigation safety, it is wise to wonder whether we should spend large amounts of money to maintain a monument that is not accessible to the public. Our scientific experiment demonstrates that this lighthouse is a unique laboratory to study extreme waves and the loading they induced on marine structures. We believe that its privileged location at the edge of a steep shoal overseeing the open ocean makes it a favorable site for many other fields of research including wave-current interactions, wave breaking or air-sea interface processes. This opportunity could offer a second operational life to La Jument and may justify maintaining this fascinating monument in good condition.

Authors’ Contributions. JFF drafted the manuscript and analyzed the accelerations and stereo-video times series. PG, FL, MA and RD produced and analyzed the stereo-video surfaces, EL, NF and AV contributed to the accelerations analyses, MP did the hydrodynamic climatology study, JH and RC were in charge of the X-band investigations, CR was in charge the datawell and AWAC observation study, AB performed the rogue wave analysis, VR was responsible for the BOSZ modeling, MF and NLD carried out the MBS field survey and analyzed the bathymetric data.

Funding. This work benefited from government support managed by the Agence Nationale de la Recherche under the program Investissement d’Avenir with the reference ANR-10-IEED-0006-14 and ANR-10-IEED-0006-26 related to the projects DiMe and CARAVELE. Numerical simulations were performed on HPC facilities Datarmor of “Pôle de Calcul Intensif pour la Mer” (PCIM) (http://www.ifremer.fr/p CIM). Finally, the fundings from la filière Mer, Crédit Agricole contributed to the success of the experiment.
Acknowledgements. We acknowledge the contribution of Peter Sutherland and (Ifremer) to the deployment of the stereo-system and assistance in the SiS data acquisition. We thank Lucia Pineau-Guillou (Ifremer) for her assistance in the storm surge data analysis. We are grateful to Phares et Balises who allows us to work on La Jument and provides significant support in the preparation and realization of the deployment. We would like to thank the reviewers whose comments have significantly improve the manuscript.

References

19 Th Von Karman. The impact on seaplane floats during landing. 1929.

