Final Draft
of the original manuscript:

Hildebrand, L.; Seemann, P.; Kurtz, A.; Hecht, J.; Contzen, J.; Gossen, M.; Stachelscheid, H.:
Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses
In: Cellular and Molecular Life Sciences (2015) Springer

DOI: 10.1007/s00018-015-1957-4
Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses

Laura Hildebrand1,2, Petra Seemann1,2, Andreas Kurtz1,2,4, Jochen Hecht1,2,6, Jörg Contzen2,3, Manfred Gossen2,3, Harald Stachelscheid1,2,5

1) Charité – Universitätsmedizin Berlin, Berlin, Germany
2) Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
3) Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow, Germany
4) Seoul National University, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul, Republic of Korea
5) Berlin Institute of Health, Berlin, Germany
6) Max Planck Institute for Molecular Genetics, Berlin, Germany

Corresponding Author:
Dr. Harald Stachelscheid
Charite - Universitätsmedizin Berlin
Berlin-Brandenburg Center for Regenerative Therapies (BCRT)
Berlin Institute of Health - Stem Cell Core Facility
Augustenburger Platz 1
13353 Berlin
Tel: +49 30 450 539428
Fax: +49 30 450 524935
Email: Harald.Stachelscheid@charite.de

Key words:
Induced Pluripotent Stem Cells, TVA, ALV, selective cell targeting, lineage tracing
Abstract

Human induced pluripotent stem cells (hiPSC) differentiate into multiple cell types. Selective cell targeting is often needed for analyzing gene function by overexpressing proteins in a distinct population of hiPSC-derived cell types and for monitoring cell fate in response to stimuli. However, to date this has not been possible, as commonly used viruses enter the hiPSC via ubiquitously expressed receptors. Here, we report for the first time the application of a heterologous avian receptor, the tumor virus receptor A (TVA), to selectively transduce TVA+ cells in a mixed cell population. Expression of the TVA surface receptor via genetic engineering renders cells susceptible for infection by avian leucosis virus (ALV). We generated hiPSC lines with this stably integrated, ectopic TVA receptor gene that expressed the receptor while retaining pluripotency. The undifferentiated hiPSCTVA+ as well as their differentiated progeny could be infected by recombinant ALV (so-called RCAS virus) with high efficiency. Due to incomplete receptor blocking, even sequential infection of differentiated or undifferentiated TVA+ cells was possible.

In conclusion, the TVA/RCAS system provides an efficient and gentle gene transfer system for hiPSC and extends our possibilities for selective cell targeting and lineage tracing studies.
Introduction

Induced pluripotent cells (iPSC) have the capacity for unlimited self-renewal *in vitro* and for differentiation into nearly every cell type of the mammalian body [20]. As such, differentiated cells derived from human iPSC (hiPSC) are ideally suited for mode-of-action-analyses, the establishment of disease models or pharmacological screenings[4]. Most of these applications involve genetic engineering to introduce transgenes like reporter constructs or overexpression cassettes to study e. g. the influence of specific genes on cell differentiation or for establishing reporter cell lines. Here, besides transfection, transduction is often considered an alternative technology as it avoids many of the stress triggers usually associated with chemical and physical transfection methods. It is currently not easily possible to selectively target specific subpopulations of cells for transfection or transduction. The ability to efficiently transduce only specific subpopulations of cells would be of benefit especially for stem cells and their differentiated progeny for example to trigger transgene expression and monitor cell fate of only the targeted cell types in a mixed cell population.

For overexpression studies in avian cells the avian replication competent ALV long terminal repeat (LTR) with a splice acceptor (RCAS) virus is a well-established tool (Figure 1A) [1, 11]. The virus enters avian cells via interaction with the tumor virus surface receptor (TVA) that is not present in mammalian cells (Figure 1B). It has been shown that the range of host cell lines for RCAS virus can be expanded to non-avian cell lines by TVA receptor expression [2, 14]. Aside from its high transduction efficiency, recombinant RCAS virus technology enables the selective targeting of TVA receptor positive (TVA⁺) cells and their tracing in a mixed cell population. Additionally, it is possible to transfer multiple genes, located on different viral vectors through co-infection [7] as well as by sequential infection, due to impaired TVA receptor blocking by the RCAS virus in infected mammalian TVA⁺ cells [22].

There have been several studies reporting the application of this TVA-RCAS system in non-avian organisms, mostly in mice [5, 21]. In 1994, Federspiel *et al.* were the first to generate a transgenic mouse, in which the TVA receptor was under the control of the promoter of the chicken gene skeletal muscle α-actin[5]. Thus, the TVA receptor was only expressed in skeletal muscle cells, rendering them susceptible for selective RCAS virus infection. To date, however, the extension of the RCAS overexpression system has not been applied in human iPSC, despite its potential benefit for versatile and targeted gene transfer and cell tracing of hiPSCTVA⁺ and their progeny.

The exceptional properties of the RCAS overexpression system exploits the distant genetic origin of the RCAS virus compared to other viruses usually used when working with hiPSC. The RCAS virus is a member of the
avian leucosis and sarcoma virus (ALSV) family. In this study, the replication competent avian leukemia virus long terminal repeat (LTR) with a splice acceptor with Bryan high-titer polymerase (BP) virus (RCASBP(A)), created by Hughes and colleagues [12], has been used. The RCASBP(A) virus is assigned to group A, because it expresses the envelope A protein (envA), enabling it to bind specifically to the TVA receptor. To facilitate overexpression studies, the oncogene virus-sarcoma (v-src) gene in this viral vector has been replaced by a multiple cloning site (MCS), allowing insertion of cDNA sequences with a length of up to 2.8 kb. The gene of interest is transcribed from the viral LTR. There is also another version of this RCASBP(A) virus that has no splice acceptor, which is called replication competent ALV LTR with no splice acceptor with BP virus (RCANBP(A)). Here, the transgene expression is not driven by the LTR and to get a reliable expression of the gene of interest, introduction of a heterologous promoter into the viral genome is required.

The aim of the study was to apply the TVA-RCAS system to hiPSC, implementing the versatility of this gene transfer technology to human stem cell research. For that, we introduced the gene coding the avian TVA receptor into the genome of a hiPSC line using transposon technology (Figure 1C) [6, 13]. Stable hiPSC_{TVA+} clones remained pluripotent and the RCAS virus was able to infect both, undifferentiated cells as well as their differentiated progeny.
Methods:

Cell culture

Human iPSCs (IMR90-4, WiCell, Madison, US) and hiPSC\(^{TVAA}\) were cultured in TeSR E8 medium (StemCell Technologies, Cologne, Germany) supplemented with 100 UI/ml of each penicillin/streptomycin (Lonza, Basel, Switzerland) in 6 well dishes (Costar, Washington, DC, US) coated with Geltrex (Gibco, Paisley, UK) and routinely passaged using Gentle Cell Dissociation Reagent (StemCell Technologies) every 5-7 days at a splitting ratio of ~1:6.

TVA receptor expression vector cloning

A myc-tagged TVA950 [19] has been cloned into a modified pPB-CAG.EBNXN plasmid [24]. Briefly, the PiggyBac transposon vector used contains a human EF1α promoter driving transgene expression and an additional puromycin resistance cassette. Cloning details and vector sequence are available on request.

Transfection and selection of hiPSC\(^{TVAA}\)

For transfection, hiPSC were dissociated into a single cell suspension by treatment with accutase (Gibco) followed by washing and resuspension in TeSR E8 medium containing 10 nM ROCK inhibitor Y26732 (Wako Chemicals, Neuss, Germany). Transfection was carried out using the Neon Transfection System (Invitrogen, Carlsbad, US). Briefly, 1x10\(^5\) cells were transfected with 0.5 µg total DNA consisting of PB TVA950 transposon and PB transposase [24] in a ratio of 10:1 (w/w), using 10µl tips, settings 1.200 V for 30 ms, 1 pulse. After transfection, cells were seeded in Geltrex coated culture dishes in TeSR E8 medium. 10 nM ROCK inhibitor was added for the first 24h of culture. After six days, stably transfected cells were selected by addition of 1 µg/ml puromycin (Invivogen, Toulouse, France) to the culture medium.

Single cell clones were isolated using the CloneStem Kit (Biolamina, Sundbyberg, Sweden), following the manufacturer’s instructions.

Immunofluorescence

hiPSC\(^{TVAA}\) were cultured on 96 well imaging plates (CellCarrier, Perkin Elmer, Waltham, US) in TeSR E8 for three days. For detection of the extracellular Myc-tag attached to the TVA receptor, cells were fixed with Cytofix (BD, San Jose, US), blocked with blocking buffer (10 % FCS superior (Biochrom, Berlin, Germany) in PBS (Lonza)) and then incubated with anti-Myc-tag antibody (Cell Signaling, Leiden, Netherlands; dilution 1:2000). The cells were washed with PBS and incubated with Alexa Fluor 488 goat anti-mouse IgG secondary
antibody (Invitrogen, 1:2000). Nuclei were stained with Hoechst 33342 (2.5 μg/ml in PBS; Life Technologies, Grand Island, NY, US).

Staining of pluripotency markers was performed by fixation with Cytofix reagent, followed by blocking and permeabilization with 1X PermWash reagent (both BD) supplemented with 5% chicken serum (Life Technologies). Thereafter, cells were incubated using anti-Nanog rabbit mAb (Cell Signaling, 1:400), followed by secondary antibody anti-rabbit Alexa Fluor594 (Life Technologies). Then, staining with the fluorescence dye-conjugated antibodies octamer transcription factor 3/4 (Oct3/4) (PerCP-Cy7, BD, 1:100), stage specific embryonic antigen 4 (SSEA4) (FITC, R&D, Minneapolis, US; 1:100) and tumor rejection antigen 1-81 (Tra-1-81) (DyLight 650, Novus Biologicals, Littleton, US; 1:100) was performed. Nuclei were stained with Hoechst 33342 (2.5 μg/ml in PBS).

Microscopic analysis was performed with either a 2 Photon microscope (LEICA SP5 confocal microscope equipped with a Mai Tai HP multiphoton laser), or an Operetta imaging system (Perkin Elmer), as indicated.

RCASBP(A) and RCANBP(A) cloning and production

RCASBP(A)/RCANBP(A) vectors were obtained from Stephen Hughes. Insertion of GFP, RFP, monomeric Cherry (mCherry) and the simian virus 40(SV40) promoter (Addgene accession numbers #17619, #20972, #18807, Cambridge, US) was done by performing Gibson Assembly (NEB, Hitchin, UK; described in [8]). Primers were purchased from Eurofins (Berlin, Germany, Supplemental Table 1). RCASBP(A)/RCANBP(A) viruses were produced in DF1 cells (ATCC, Manassas, US) after transfection of the viral plasmids with PEI (Polysciences Inc., Eppelheim, Germany). On three consecutive days viral particles were harvested by collecting the supernatant, followed by ultracentrifugation for high-titer concentrates. Titers were determined as plaque forming units (PFU/ml) one day after DF1 cell infection[15].

Infection of hiPSC TVAs

For RCAS infection, hiPSCTVAs were cultured in 24 well plates (TPP, Trasadingen, Switzerland) or 96 well plates. Viral transduction was performed at a MOI of 50. Medium was changed every day. 2-3 days post infection hiPSCTVAs were analyzed after live cell staining for nuclei (Hoechst 33342 in medium, 2.5 μg/ml in PBS) using an Operetta imaging system. Sequential infection was done 3 days apart.

Fluorescence activated cell sorting (FACS) analysis

Cells were dissociated using Gentle Cell Dissociation Reagent and fixed with Cytofix. For Myc-tag quantification, cells were stained with anti-Myc-tag antibody (Cell Signaling, 1:2000), washed with PBS,
followed by staining with secondary antibody Alexa Fluor 488 goat anti-mouse IgG secondary antibody (Invitrogen, 1:2000). Afterwards, cells were diluted in FACS buffer, consisting of 2 % bovine serum albumin (Sigma Aldrich, Seelze, Germany) and 2 mM EDTA (Sigma Aldrich) in PBS. To quantify transduction, cells, diluted in FACS buffer, were directly used for FACS analysis, which was performed with an Accuri C6 (BD, San Jose, US). Data was analyzed with the FCS express 4 software (De Novo, Los Angeles, US).

Undirected differentiation of hiPSC in 2D and 3D culture

Undirected differentiation of hiPSC wild type in 2D culture was induced by culture in DMEM Low Glucose (Biochrom), 10 % FCS superior, 2 mM L-Glutamine (Biochrom) and 100 UI/ml Penicillin/Streptomycin (Biochrom) for three days, following immune staining and FACS analysis.

To differentiate hiPSC wild type in 3D culture, embryoid bodies (EBs) were generated either by cell aggregation in ultra low attachment plates (Costar) or in AggreWell plates (StemCell Technologies). Subsequently, after aggregate formation, EBs were cultured either in DMEM Low Glucose supplemented with 10 % FCS superior, 2 mM L-Glutamine and 100 UI/ml Penicillin/Streptomycin for 10 days or in KnockOut DMEM/F12 (Invitrogen) supplemented with 20 % KnockOut Serum Replacer (Invitrogen), 50 µM 2-Mercaptoethanol (Invitrogen), 1X MEM Non-Essential Amino Acids (Invitrogen), 2 mM L-Glutamine and 100 UI/ml Penicillin/Streptomycin for 7 days. Medium was changed every other day.

Splinkerette PCR

A Splinkerette PCR was performed according to Potter and Luo 2014[18] to determine copy number and chromosomal integration site of the PB transposon. In short: genomic DNA was isolated using the Genomic DNA from tissue kit (Machery-Nagel, Dueren, Germany). 1 µg of this gDNA was digested with BstYI (Fermentas, Burlington, Canada) for 2 h, followed by ligation of the resulting DNA fragments to Splinkerette oligos (sequences according to [18], Supplemental Table 1). Two rounds of PCR were conducted, amplification products separated using an 1 % agarose gel (Invitrogen) and bands indicating single-copy events were purified with the Omnipure OLS kit (Omni Life Science, East Taunton, US). These PCR products then were sequenced using a 3730 DNA Analyzer (Life Technologies; primer sequences are listed in Supplemental Table 1).

Resulting sequence information was analyzed using the BLAT tool using the UCSC genome browser (http://genome.ucsc.edu/).
RNA isolation and quantitative PCR analysis of marker genes

Undifferentiated iPSC\textsuperscript{TVA+} and EBs were harvested and disrupted using a Shredder (Qiagen, Valencia, US), followed by RNA extraction (RNeasy Plus Mini Kit, Qiagen). 1 µg of total RNA were reverse transcribed into cDNA with the TaqMan Reverse Transcription Reagents (Invitrogen). After confirming RNA integrity by 2 % agarose gel electrophoresis, cDNA was applied for quantitative analysis of trilineage differentiation potential performing quantitative PCR analysis using commercially available Taqman probes and measured on a QuantStudio 6 machine (Life Technologies, Supplemental Table 2). For normalization the expression of the housekeeping genes β-Actin, Transcriptional repressor CTCF, E1A binding protein p300 and Mothers against decapentaplegic homolog 1 (Smad1) were determined. To obtain the ΔCt values of the genes of interest (GOI), the mean of the housekeeping genes (ranging between 23 and 25) was subtracted from their Ct value. The ΔΔCt value was calculated by ΔCt (GOI) minus ΔCt of the reference values of undifferentiated hiPSC\textsuperscript{TVA+}.

Statistics

Statistical analysis for standard derivation of RCAS infection of hiPSC\textsuperscript{TVA+} and its differentiated progeny was calculated using Prism 6 software (GraphPad, La Jolla, USA). Groups consisted of three independent experiments each.
Results:

Ectopic TVA receptor is located on the cell surface in human iPSC

hiPSC were transfected with a PiggyBac transposon carrying the TVA receptor under the control of the housekeeping promoter elongation factor 1 (EF1). Transgene-positive cells were isolated by antibiotic selection, cloned and analyzed for single transposon integration.

TVA receptor expression in the three isolated hiPSC^{TVA} clones was analyzed by immunofluorescence staining of the Myc-tag fused to the extracellular c-terminus of the TVA receptor protein.

Using 2 photon microscopy, expression of the TVA receptor on the cell surface of hiPSC^{TVA} was shown (Figure 2A+C). FACS analysis was performed and revealed the presence of the TVA receptor in 93.31 % of the cells (Figure 2B).

hiPSC^{TVA} are susceptible to RCAS virus infection

To analyze the efficiency by which hiPSC^{TVA} and their differentiated progeny can be infected by RCAS virus, hiPSC^{TVA} were infected with RCASBP(A) carrying the green fluorescent protein (GFP) gene as reporter. No viral reporter gene expression could be observed in undifferentiated hiPSC^{TVA} three days post infection (Figure 3D). Interestingly, after spontaneous differentiation of RCASBP(A) GFP–transduced hiPSC^{TVA}, viral gene expression was initiated as evidenced by GFP expression (Figure 3A). When differentiated cells derived from the hiPSC^{TVA} were infected with RCASBP(A), GFP expression was observed 72 hours after infection (Figure 3B). In these experiments, high infection efficiencies were observed by FACS analysis, specifically 73.3 % (± 7.6 %) for undifferentiated cells and 64.0 % (± 7.2 %) for differentiated cells (Figures 3E, F).

To test the influence of the specific promoter on the transgene expression in undifferentiated hiPSC, an alternative promoter to the viral LTR for initiation of the GFP reporter gene expression was tested. When hiPSC^{TVA} were infected with a RCANBP(A) carrying GFP under SV40 promoter control GFP expression was detected 72 hours post infection (Figure 3C). FACS analysis showed an infection efficiency of 56.0 % (± 13.1 %) (Figure 3G). GFP expression was retained upon cell differentiation (data not shown).

hiPSC^{TVA} are pluripotent and have a single transposon integration site

For most conceivable applications of the hiPSC^{TVA} technology, it is mandatory to confirm the continued pluripotency of the cells after the genetic engineering by introduction of the TVA cDNA. Pluripotency of the hiPSC^{TVA} was confirmed by detection of the expression of pluripotency markers in undifferentiated cells and
evaluation of the differentiation capability into cells of all three germ layers. First, co-expression of the pluripotency markers SSEA4, TRA-1-81, Oct3/4 and NANOG in undifferentiated hiPSCTVA+ was confirmed by positive immunofluorescence staining (Figure 4). Second, gene expression was analyzed in undifferentiated hiPSCTVA+ and embryoid bodies (EBs) by quantitative RT-PCR using markers of all three germ layers. In the EBs the expression of the ectodermal markers Paired box protein 3 (PAX3), Myosin III B (MYO3B) and Wingless-Type MMTV Integration Site Family, Member 1 (WNT1), the endodermal markers Krueppel-like factor 5 (KLF5), SRY (sex determining region Y)-box 17(SOX17) and Hepatocyte nuclear factor 4-alpha (HNF4A) as well as the mesodermal markers Heart- and neural crest derivatives-expressed protein 1(HAND1), HAND2 and Homeodomain-only protein (HOPX) was detected. In parallel, the pluripotency markers POU domain, class 5, transcription factor 1(POUSF1/Oct 4), Nanog and sex determining region Y box 2(Sox 2) were down regulated (Supplemental Figure 1).

Splinkerette PCR was performed to examine the number and position of integration sites of the PB transposon. For the hiPSCTVA+ clone#1 used mostly throughout the investigation reported here, intra-intronic integration into the zinc finger matrin-type protein 4 (ZMAT4) gene was determined (Table 1).

Infection of human cells with RCAS vectors is highly specific to TVA expressing cells

Next we tested the application for the selective targeting of hiPSCTVA+ in mixed cell populations. As a proof of concept hiPSCTVA+ were co-cultured with a stable hiPSCGFP+ cell line. This mixed population was infected with a RCANBP(A) virus, containing mCherry under the control of the SV40 promoter. Microscopic analysis three days after infection revealed that expression of the fluorescent proteins on the cellular level was mutually exclusive. In consequence, only GFP-negative hiPSCTVA+ were infected by the mCherry encoding RCAN virus, as evident from cell clusters of the respective hiPSC subpopulations growing into each other (Figure 5).

Moreover, sequential infection with two RCAS viruses at different time points was possible. This has been tested in hiPSCTVA+ (Data not shown), as well as their differentiated progeny (Figure 5B). Here, hiPSCTVA+ were first infected with a RCAS RFP virus, followed by infection with a RCAS GFP virus three days later.
Discussion:

The aim of this study was to establish the avian leukosis virus (ALV)-based retroviral vector TVA-RCAS system for human iPSC, expanding its reach to stem cell research. To establish and evaluate the TVA-RCAS system in stem cells, we generated hiPSC clones expressing the TVA receptor gene, evaluated the presence and functionality of the receptor, confirmed their continued pluripotency and lastly characterized the potency of the system by determining the infection efficiency and selectivity in a mixed cell population using RCAS viral vectors.

In our study we were able to stably transflect and express the TVA receptor in hiPSC using a PiggyBac transposon, taking advantage of the high chromosomal integration activity of this gene transfer system[23]. There was no obvious effect on pluripotency subsequent to the genetic manipulation of the hiPSC. As previously described in the literature, the EF1 promoter proved to be suitable for high ectopic gene expression in hiPSC, as well as in their differentiated progeny [9, 16]. Correct localization of the TVA receptor on the cell surface and susceptibility of hiPSCTVA+ for the RCAS virus were verified. However, viral gene expression in hiPSCTVA+ turned out to be problematic as RCAS-vector based GFP-transgene expression was not detected in hiPSCTVA+ after infection, when using the viral LTR for gene overexpression (Figure 3D). One explanation could be that the hiPSC are not permissive for the RCAS virus. This possibility was ruled out by showing that LTR-driven GFP transgene expression started after differentiation of hiPSCTVA+ infected with a RCAS vector. Another explanation could be the lack of functionality of the viral LTR in hiPSC. Our study suggests that this is the case as we were able to overcome this problem by using the heterologous SV40 promoter in a modified RCAS version, the RCAN virus.

We also tested the EOS-C 3+ (Early transposon promoter and Oct4 and Sox2 enhancers) [10], Thymidine Kinase (TK) [17] and CMV promoters, which were functional in initiating ectopic gene expression in hiPSC, but gene expression was lower compared to SV40 (data not shown).

When using the EF1 and Cytomegalovirus (CMV) early enhancer/chicken beta actin (CAG) promoters, there was no functional RCAN virus production even in the DF1 production cell line. We hypothesize that this is due to intron sequences being recognized and spliced before integration into the hiPSC genome, which leads to a non-functional shortened promoter version.

Nevertheless, we observed higher infection efficiencies in differentiated hiPSCTVA+ progeny than in hiPSCTVA+. This might be explained by increased silencing of retroviral DNA in hiPSC after integration into the genome.
Whatever the mechanism, the RCAS vector system introduced here, provides not only the opportunity for infection with at least two different viral constructs, but also for multiple re-infection at later time points. This enhances the utility of the RCAS viruses for e.g. lineage tracing. The unusual possibility for subsequent transductions is most likely due to incomplete blocking of the TVA receptors by EnvA protein on the cell surface, since there is no sufficient viral protein production in non-avian cells[22].

The final purpose of this study was to confirm selectivity of RCASBP(A) infection towards hiPSCTVA+ in a mixed cell population, which could be shown accurately, when co-culturing hiPSCTVA+ with hiPSC stably expressing GFP followed by infection with a RCANBP(A) SV40 mCherry virus. This highlights one uniqueness of this newly designed tool: most of the commonly used retro- and lentiviral vector systems used for stem cell transduction enter cells by interactions of the vesicular stomatitis virus glycoprotein (VSV-G protein) and the corresponding receptor, which is ubiquitously present on mammalian cell membranes and therefore makes selective infection impossible[3]. In contrast to that, RCAS virus infection is guarded by the EnvA protein [11] recognizing the TVA receptor. Therefore, cellular selectivity for the RCAS virus is given, after ectopic TVA receptor expression [2, 5].

Taken together, a novel tool for the efficient transduction of hiPSC was developed. We foresee the selective targeting of defined subpopulations of cells, either in mixed stem cell cultures or in lineage tracing experiments, as well as possible sequential infection as main areas of application for this technology.

Conclusion:

In this study we report for the first time the successful application of the TVA-RCAS system for efficient infection of hiPSC. It represents a promising new avenue for generating genetically engineered stem cells via viral transduction for differentiation, cell fate and gene function studies. The TVA-RCAS system has the added value of selective targeting hiPSCTVA+ in mixed populations as well as sequential infection with different viruses.

Acknowledgement

We thank Mareen Schmidt-von Kegler and Maria Walther as well as the Berlin Institute of Health (BIH) Stem Cell Core Facility for excellent technical assistance and the people from the laboratory of Prof. Petra Seemann and Dr. Andreas Kurtz for helpful discussions regarding the study. Additionally, we thank Dr. Stephen Hughes for kindly providing us with the RCAS and RCAN vectors and Dr. Ansgar Petersen for help at the 2 photon microscope. We appreciate the financial support and provision of laboratory facilities by Prof. Petra Reinke.
Laura Hildebrand is a member of the DFG funded Berlin-Brandenburg School for Regenerative Therapies GSC 203. This work was supported by the grant 1315848A for the Berlin-Brandenburg Center for Regenerative Therapies (BCRT) by the Initiative and Networking Fund of the Helmholtz Association, Germany.

Conflict of interest

All authors state that they have no conflict of interest.
References:

Figure legends:

Figure 1: Scheme of the TVA-RCAS system in avian and mammalian cells The genome of the RCAS virus consists of two Long Terminal Repeats (LTR) flanking the three viral genes (1) group specific antigen (gag) (2) polymerase (pol) (3) envelope (env) and the multiple cloning site (MCS). [A] In avian cells the RCASBP(A) virus enters through the TVA receptor and is replication competent. [B] In mammalian cells the virus cannot enter, as the TVA receptor is not expressed. [C] By transfecting a transposon holding the TVA receptor cDNA, infection of mammalian cells becomes possible; however, no functional RCASBP(A) virus is produced.

Figure 2: Immunolocalisation of TVA receptor in hiPSC^{TVA}⁺ [A] Anti-Myc-tag stained hiPSC^{TVA}⁺ for detection of TVA receptor expression (left panel). Merge of Hoechst33342 and Myc-tag staining and view of the xz and yz plane (right panel). [B] Quantification of TVA receptor using FACS analysis. [C] Magnification of Hoechst33342 and Myc-Tag staining. (Scale bar = 61 µm)

Figure 3: Detection of RCASBP(A) and RCANBP(A) infection in hiPSC^{TVA}⁺ [A] GFP expression in differentiated hiPSC^{TVA}⁺ progeny infected in an undifferentiated state (left panel). Merge of Hoechst33342 and GFP(right panel). [B] GFP expression in differentiated hiPSC^{TVA}⁺ progeny infected in a differentiated state(left panel). Merge of Hoechst33342 and GFP (right panel). [C] Brightfield (left panel). GFP expression in hiPSC^{TVA}⁺ (middle panel). Merge of Hoechst33342 and GFP (right panel). [D-G] Quantification of GFP expression by FACS. (Scale bar = 50 µm)

Figure 4: Expression of pluripotency markers in hiPSC^{TVA}⁺ [A] Hoechst33342 stained nuclei. [B] Anti-stage-specific embryonic antigen 4 (SSEA4) staining (cell surface) [C] Anti-Tra-1-81 staining (cell surface). [D] Anti-Oct3/4 staining (nuclear) [E] Anti-Nanog staining (nuclear). (Scale bar = 50 µm)

Figure 5: Selective targeting in a mixed population and sequential infection of hiPSC^{TVA}⁺ [A] Selective infection: Hoechst33342 stained nuclei (left panel). mCherry expression in hiPSC^{TVA}⁺ infected with RCANBP(A) SV40 mCherry GFP expression in stable hiPSC GFP cell line. Merge of Hoechst 33342, mCherry and GFP. [B] Sequential infection: RFP expression in spontaneously differentiated hiPSC^{TVA}⁺ with RCASBP(A)RFP (left panel); and RCASBP(A) GFP (middle/left panel). Merge of RFP and GFP (middle/right panel) and merge of Hoechst33342, RFP and GFP (right panel). (Scale bar = 50 µm)

Supplemental Figure 1: Confirmation of trilineage differentiation potential of Clone 1 hiPSC^{TVA}⁺ Undirected differentiation of the hiPSC^{TVA}⁺ as embryoid bodies (EBs) in two different media showed upregulation of markers for the three germ layers, while markers for pluripotency were downregulated.
Figure 1
Click here to download Figure: Fig.1.jpg
Table 1: Summary of the key characteristics of the generated hiPSC^{TVA+} lineages

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Clone 1 hiPSC<sup>TVA+</sup></th>
<th>Clone 2 hiPSC<sup>TVA+</sup></th>
<th>Clone 3 hiPSC<sup>TVA+</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirmation of pluripotency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pluripotency marker expression</td>
<td>Oct3/4<sup>b</sup></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Nanog</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>SSEA4<sup>c</sup></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Tra-1-81<sup>d</sup></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spontaneous Differentiation</td>
<td>Ectoderm</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Endoderm</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Mesoderm</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Transgene verification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PiggyBac transposon integration sites</td>
<td>Amount</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chromosome</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Gene name</td>
<td>ZMAT<sup>e</sup></td>
<td>FOXH1<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>Gene region</td>
<td>Intron</td>
<td>Exon</td>
</tr>
<tr>
<td>Staining for TVA receptor (Myc-tag)</td>
<td>Undifferentiated</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Differentiated</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Transducability</td>
<td>RCASBP(A)<sup>i</sup></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>RCANBP(A)<sup>j</sup></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Viral transgene expression</td>
<td>RCASBP(A)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>RCANBP(A)</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

^a human induced pluripotent stem cells tumor receptor virus A positive (hiPSC^{TVA+})
^b octamer transcription factor 3/4 (Oct3/4)
^c stage specific embryonic antigen 4 (SSEA4)
^d tumor rejection antigen 1-81 (Tra-1-81)
^e Zinc finger matrin-type protein 4 (ZMAT4)
^f Forkhead box H1 (FOXH1)
^g Potassium voltage-gated channel subfamily H member 6 (KCNH6)
ⁱ present
^j RCASBP(A): replication competent Avian Leukoma Virus (ALV) Long Terminal Repeat (LTR) with a splice acceptor with Bryan high-titer polymerase
^k RCANBP(A) replication competent Avian Leukoma Virus (ALV) Long Terminal Repeat (LTR) with no splice acceptor with Bryan high-titer polymerase
Click here to download Supplementary Material: Suppl.Tab.1_TVA_CMLS.docx
Click here to download Supplementary Material: Suppl.Tab.2_TVA_CMLS.docx