
Fluence thresholds for grazing incidence hard x-ray mirrors

DOI: 10.1063/1.4922380
Fluence thresholds for grazing incidence hard x-ray mirrors

A. Aquila,1,a) R. Sobierajski,2 C. Ozkan,1,b) V. Hájková,3 T. Burian,3 J. Chalupský,3 L. Juha,3 M. Stormer,3 S. Bajt,3 M. T. Klepka,2 P. Dłużewski,3 K. Morawiec,2 H. Ohashi,6,7 T. Koyama,6,7 K. Tono,6,7 Y. Inubushi,6 M. Yabashi,6 H. Sinn,7 T. Tschentscher,1 A. P. Mancuso,1 and J. Gaudin1,c)

1European XFEL GmbH, Albert-Einstein-Ring 19, Hamburg D-22671, Germany
2Institute of Physics, PAS Al. Lotnikow 32/46, Warsaw PL-02-668, Poland
3Institute of Physics, ASCR, Na Slovance 2, CZ 182 21 Prague 8, Czech Republic
4Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, Geesthacht D-21502, Germany
5Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg D-22607, Germany
6RIKEN/SPring-8 Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
7Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan

(Received 25 March 2015; accepted 31 May 2015; published online 17 June 2015)

As X-ray Free Electron Lasers (XFELs) approach terawatt power levels, knowledge of the fluence limits of X-ray optical coatings becomes increasingly important. It is difficult to use intense X-ray pulses without optics that can withstand the full intensity of the XFEL beam. All materials in the X-ray regime have complex indices of refraction, with typically the real part of the index being less than one. This means at very shallow angles, below a critical angle that is material and photon energy dependent, all materials have the property of total external reflection and are near perfect reflectors of X-rays. However, due to the index of refraction being complex, and hence exhibiting absorption, no grazing incidence mirror, or mirror coating, has a perfect 100% reflectivity of the incidence photons below its critical angle, and will therefore also absorb a fraction of the incident energy. Additionally, as X-ray mirrors operate in total external reflection, the attenuation length of the X-rays into the mirror potentially drops to nanometer scales, increasing the volumetric dose the material receives at its surface.

In this study, we used focused pulses from the SPring-8 Angstrom Compact free electron laser (SACLA) XFEL facility to measure the damage thresholds of two materials used for X-ray mirror coatings: boron carbide (B₄C) and ruthenium.

Boron carbide was chosen as it is commonly used in existing hard X-ray XFEL grazing incidence optics. This is due to its good thermal properties, high melting point, low density, and use of only low atomic number elements. For high Z metal coatings, such as Ru, to be used as viable optics at XFELs, it is critical to know their single shot damage threshold fluence limit, as well as to understand the physical damage mechanism to predict the behavior of other materials and combinations.

To determine the damage thresholds, we exposed Ru and B₄C coated super polished flat silicon mirror substrates to...
focused XFEL radiation at the SACLA facility. Measurements were conducted using single shots of a micron focused X-ray beam with photon energies of 7 and 12 keV, pulse energies of up to 100 μJ delivered on the sample, and pulse durations of order 20 fs. The X-rays were focused using a pair of Kirkpatrick-Baez (KB) optics, with a full width at half maximum (FWHM) focal spot size of 1.20 μm vertical by 0.95 μm horizontal.

The samples consisted of 50 nm of sputtered Ru and B4C on super polished mirror flats. Sample densities and the thickness of the thin films were measured using Mo K-α radiation as shown in Figure 1. Surface roughness was also measured using atomic force microscopy. Based on the coating densities measured, the attenuation lengths were also estimated for both materials as shown in Figure 1 and Table I. Of particular note is the nanometer attenuation length below the critical angle.

These test optics were mounted at grazing incidence angles in the focused SACLA XFEL beam. The optics were mounted such that the linear polarized FEL X-rays were reflected in a P-polarized geometry. The incidence angles for Ru coated substrates were measured to be 4.5 and 3.0 mrad for 7 keV and 12 keV, respectively. For the B4C coated substrates, the incidence angles of 4.0 and 2.5 mrad were used for the 7 keV and 12 keV data, respectively. The shallower angles used for the B4C optic is due to their lower critical angle than the Ru coated optic. All grazing angles were measured to better than 50 μrad using a downstream camera in the reflective 20 geometry at low fluence, and hence, all measurements were conducted in the total external reflection regime. To adjust the fluence of the SACLA XFEL, aluminum and silicon solid attenuators were inserted upstream of the KB focusing optics. In addition, the XFEL pulses jitter in both photon energy and pulse energy, and therefore, single-shot electron diagnostics and X-ray gas cell diagnostics were used to measure these quantities, respectively. X-ray induced damage was observable for all samples below the critical angle with the exception of B4C at 12 keV, where no physical damage to the mirror surface was detectable, even when the maximum available pulse energy was focused onto the sample.

Confocal microscopy was used to measure the lengths of the damaged surface induced by the single shot X-ray pulses as shown in Figure 2 for Ru and Figure 3 for B4C. Additional image analysis was conducted using scanning electron microscopy and cross-sectioned transmission electron microscopy techniques on selected craters as shown for Ru in Figure 2 and for B4C in Figure 3. Interestingly, the widths of the craters were often not continuous or uniform. For fluence threshold measurements, knowledge of the damaged area is required. Estimates of the crater width were made by measuring the lengths of the damaged surface and then scaling by the incidence angle, as the transverse/perpendicular sizes of the FWHM focal spot size taken at normal incidence are nearly symmetric in both transverse directions. Standard methods were used to determine the fluence thresholds for damage for the samples, as shown in Figure 4 and Table I. In the case of B4C at 12 keV, only a lower bound could be given due to the lack of visible damage. We also note that the estimated beam size and shape were consistent with those determined by normal incidence measurements taken on lead(II) iodide and on silicon oxide.

It is of note that the fluence damage thresholds are far higher than the values obtained for normal incidence measurements or measurements conducted at lower photon energies. This is due to a significant fraction of the pulse energy being reflected by the mirror coatings and not absorbed into the material. Additionally, the grazing angle increases the footprint of the XFEL beam reducing the effective fluence as compared to normal incidence. However, even if these two effects are taken into account, high values of the damage fluence are observed. It is noted that multishot damage measurements on a similar system have observed an order of magnitude reduction in damage fluence compared to this work. The reduction is consistent with measurements conducted at soft X-rays where the single shot damage threshold is an order of magnitude higher than the observed multi-shot damage threshold. This is potentially due to a related, but different, optical damage mechanism, such as carbon contamination of the optical surface.

A rough estimate of the dose required to damage a material is to absorb enough energy to raise the material’s temperature from room temperature to its melting point. For ruthenium, this absorbed energy dose is 1.01 eV/atom and for B4C this dose threshold is 3.7 eV/atom. However, as X-ray optic coating are thin films, care must be given to investigate and understand the interfaces between the film and the substrate. For example, layers of B4C and Si in B4C/Si multilayers interdiffuse and form rough interfaces at temperatures of 300 °C, which is far below the melting temperature of 2763 °C.

Using the measured damage threshold pulse energy, X-ray beam footprint area, and the 1/e extinction length to calculate the absorbed dose, one obtains a result that is >20 eV/atom absorbed threshold dose for B4C, and well over 100 eV/atom for Ru. These values are unrealistic, since even
TABLE I. This table shows both experimental parameters used, as well as calculated values for each coating and photon energy explored. For the threshold fluence, the lateral size of the XFEL was taken into account. Note that the threshold fluence could not be calculated for B4C at 12 keV, as the sample showed no visible signs of damage. In addition, as a significant fraction of the pulse energy is transmitted into the substrate, no realistic values of the damage dose could be calculated as they would relate more to the Si substrate than to the B4C layer.

<table>
<thead>
<tr>
<th>Material</th>
<th>Photon energy (keV)</th>
<th>Reflectivity (%)</th>
<th>Grazing angle (mrad)</th>
<th>1/e X-ray extinction depth (nm)</th>
<th>Threshold fluence (J/cm²)</th>
<th>Fraction of energy emitted as photoelectrons (%)</th>
<th>Calculated damage dose (eV/atom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru</td>
<td>7</td>
<td>89.9</td>
<td>4.5</td>
<td>1.8</td>
<td>310</td>
<td>68</td>
<td>1.7</td>
</tr>
<tr>
<td>Ru</td>
<td>12</td>
<td>95.0</td>
<td>3.0</td>
<td>1.9</td>
<td>4700</td>
<td>67</td>
<td>0.98</td>
</tr>
<tr>
<td>B4C</td>
<td>7</td>
<td>99.1</td>
<td>4.0</td>
<td>11.1</td>
<td>2400</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>B4C</td>
<td>12</td>
<td>97.5</td>
<td>2.0</td>
<td>4.9</td>
<td>>10000</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

non-thermal high excitation processes, like plasma formation, would occur at much smaller dose levels. As the materials show no visible signs of damage at fluence levels where the calculated dose far exceeds the expected damage threshold, a method of energy transport that distributes the absorbed energy over a larger volume could explain the observations shown in this work.

It has been proposed21 that the energetic photoelectrons produced by the absorbed X-rays, with keV levels of kinetic energy, would ballistically transport the absorbed energy over a significantly larger volume and into the surrounding material. This would be conducted via multiple electron scattering events, as well as produce significant levels of photoelectrons escaping the surface to carry away the absorbed energy. These scattering events will cause secondary electron cascades as the energy is dissipated. To quantify this effect and model these processes, the PENELOPE22,23 Monte Carlo simulation software package for electron/photon transport was used. The modeling begins by simulating photoelectrons produced at the surface of the modeled sample. The modeled sample consisted of 50 nm of the coating material (Ru or B4C), followed by a thick Si substrate. As the dominant photoelectrons in B4C come from the K shell, the simulations consisted of photoelectrons with momentum directions perpendicular to the surface following the electric field vector for the P-Polarization geometry. For the Ru simulations, the photoelectrons are split between the L\textsubscript{1} and L\textsubscript{2,3} shells. Therefore, simulations were conducted for photoelectrons produced both perpendicular to the surface, as well as photoelectrons distributed over 4\pi. This is to simulate the photoelectrons from the different shells. Auger electrons were not considered in the simulations as their kinetic energy is far lower than that of the photoelectrons. As the PENELOPE code models interaction event showers for one particle at a time and assumes the simulated material is static in state, processes caused by the intense femtosecond nature of the XFEL pulses, such as surface charging and photoelectron collision, are ignored in the modeling and place limits on the accuracy of the simulations. However, as we are trying to model the processes at energy densities just at

FIG. 2. (a) A typical confocal microscope image of a Ru damage crater at 7 keV used to determine the fluence thresholds. (b) A SEM of a damage crater for the Ru sample from a 12 keV X-ray pulse near the threshold fluence. Note that the crater is not continuous. (c) A cross-section TEM for the Ru sample from a 12 keV X-ray pulse for a sample just above the damage threshold. Note that Pt (top material) was used as a coating material to preserve the sample for thinning for use in the TEM. The damage area is not a crater, as compared to the Ru in Figure 2, but a slightly raised bulge in the B4C layer (white layer) is observed. The damage to the B4C appears to be localized to the interface between the B4C and the Si substrate. The inset shows high resolution images of undamaged (b) and damaged (c) interfaces. In the high resolution damaged image, a slight expansion of the interface as the B4C and the Si inter-diffuses is observed causing interface roughness.

FIG. 3. (a) A cross-section TEM for the B4C sample from a 7 keV X-ray pulse for a sample just above the damage threshold. Note that Pt (top material) was used as a coating material to preserve the sample for thinning for use in the TEM. The damage area is not a crater, as compared to the Ru in Figure 2, but a slightly raised bulge in the B4C layer (white layer) is observed. The damage to the B4C appears to be localized to the interface between the B4C and the Si substrate. The inset shows high resolution images of undamaged (b) and damaged (c) interfaces. In the high resolution damaged image, a slight expansion of the interface as the B4C and the Si inter-diffuses is observed causing interface roughness.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: of the absorbed energy is absorbed at the B4C/Si interface. It only a small fraction of the energy is actually absorbed in the energy is transmitted into the Si substrate; in addition, damage to the optical coating. This is also indicated by the interface just below the B4C layer prior to the onset of damage, where no plasma or non-linear effects are expected, the modeling is expected to give valid results.

One interesting result is that a significant fraction of the pulse energy is estimated to be emitted into the vacuum chamber as energetic photoelectrons. The estimated fraction of energy removed by photoelectrons escaping the sample is shown in Table I. For the energy that is absorbed into the mirror coating and the substrate, the simulated depth profile is shown in Figure 5. It is clear from Figure 5 that for B4C, only a small fraction of the energy is actually absorbed in the B4C layer. The significant fraction, >85%, of the absorbed energy is transmitted into the Si substrate; in addition, ~5% of the absorbed energy is absorbed at the B4C/Si interface. It is hypothesized that this causes damage to the Si substrate at the interface just below the B4C layer prior to the onset of damage to the optical coating. This is also indicated by the cross-section TEM images shown in Figure 3. For the Ru coating, a significant fraction of the energy is absorbed in the Ru layer. Qualitatively, this is consistent with the cross-section TEM image in Figure 2, where the Ru layer shows signs of thermal damage such as cracking of the layer, and ablation of ruthenium. In all simulations, the deposition of the initial energy is dissipated into a volume one to two orders of magnitude larger than the 1/e X-ray attenuation length. Using the ballistic electron energy transport 1/e extinction depths obtained for Ru in the simulations (Figure 5), we obtain damage dose estimates (Table I) consistent with expected thermal damage estimates. For the B4C damage, estimates cannot be given, as a significant fraction of the deposited energy is transported into the B4C/Si interface and the Si substrate.

We have analyzed grazing incidence hard X-ray optical coating for damage caused by single intense XFEL pulses. We have determined the fluence levels that are sustainable for a low Z material (B4C) and for a high Z metal coating (Ru). In both cases, the damage threshold is orders of magnitude higher than would be predicted by the energy density absorbed on the sample’s surface. The calculated damage doses (Table I) are consistent with expected doses for thermal damage, when the transport of energy—via ballistic keV photoelectrons into a larger volume, and deeper into the sample, prior to the thermalization of these hot electrons with the optical coating and substrate—is included in the dose calculations.

Support from the operators of the SACLA facility is gratefully acknowledged. This work has been partially supported by the Polish National Science Center (Grant No. DEC-2011/03/B/ST3/02453), Academy of Sciences of the Czech Republic (M100101221) and the Czech Science Foundation (14-29772 S).

