Final Draft of the original manuscript:

Rahman, M.M.; Shishatskiy, S.; Abetz, C.; Georgopanos, P.; Neumann, S.; Khan, M.M.; Filiz, V.; Abetz, V.:
Influence of temperature upon properties of tailor-made PEBAX® MH 1657 nanocomposite membranes for post-combustion CO2 capture
In: Journal of Membrane Science (2014) Elsevier

DOI: 10.1016/j.memsci.2014.06.048
Influence of temperature upon properties of tailor made PEBAX® MH 1657 nanocomposite membranes for post combustion CO₂ capture

Md. Mushfequr Rahman¹, Sergey Shishatskiy¹, Clarissa Abetz¹, Prokopios Georgopanos¹, Silvio Neumann¹, Muntazim Munir Khan¹, Volkan Filiz¹*, Volker Abetz¹,²*

¹Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
²University of Hamburg, Institute of Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany

Corresponding Email: volkan.filiz@hzg.de, volker.abetz@hzg.de

Abstract:

Tailor made block copolymer nanocomposite membranes are prepared by incorporation of 40 wt% methoxy poly(ethylene glycol) (PEG) functionalized polyoctahedral oligomeric silsesquioxanes (POSS) nanoparticles in commercial thermoplastic elastomer multiblock copolymer PEBAX® MH 1657. Atomic force microscopy was used to find out the location of the nanoparticles in the block copolymer matrix. Separation of CO₂ from N₂ and H₂ is studied by measurements of single gas transport properties of nanocomposite materials using the time-lag method in the temperature range 30 °C to 70
°C. PEG functionlized POSS nanoparticles increase the CO₂ permeability of the nanocomposite membranes without loss of CO₂/N₂ and CO₂/H₂ selectivity. Thermal properties of the nanocomposite membranes are studied by differential scanning calorimetry (DSC) to assess the stability of the nanocomposite membranes upon melting of polyether and polyamide blocks.

Keywords: PEBAX, POSS, Nanocomposite, Gas separation membrane.

Highlights:
- We examine PEBAX® MH 1657 nanocomposite membranes for post combustion carbon capture
- Location of nanofillers in phase separated block copolymer matrix PEBAX® MH 1657
- CO₂ separation performance of the membranes in the temperature range 30 °C to 70 °C
- Structure-property relationship of the CO₂ separation membranes
- Stability of the membranes upon melting of polyether and polyamide block

1. Introduction

One of the biggest challenges to ensure sustainable industrial growth and to mitigate the climate change is to find an economically feasible separation technology for removal of CO₂ from the effluent flue gas streams. Economically, the advantage of membrane gas separation technology is immense. Simple process design and lower energy requirement compared to the conventional gas separation technologies (e.g. liquid adsorption) have
paved the way for use of the membrane technology in commercial CO₂ removal applications. [1] Large scale industries e.g. fossil fuel power plants, oil refineries, steel mills emit enormous amount of CO₂. Fossil fuel power plants alone are responsible for approximately 40% of total CO₂ emission, coal fired plants being the main contributor. [2] CO₂ selective membranes can offer a cost effective post combustion gas stream treatment process to lower the CO₂ emission of existing and future fossil fuel based power plants. In an average a 600 MW coal fired power plant generates 500 m³/s of flue gas. In a typical coal fired power plant, the flue gas after leaving the boiler is passed through an electrostatic precipitator (to remove particulates), a desulfurizer (to remove SO₂ gas), and then CO₂ can be separated. At this stage the water saturated flue gas is at about 50°C, nearly atmospheric pressure and has a CO₂ content as low as 10-15% or CO₂ partial pressure of 100-150 mbar. [3] For this particular application the membrane must compensate the low driving force of separation with high CO₂ permeability and moderate selectivity over other gases. [4] Hence, there is an emerging research impetus to increase the permeability of the CO₂ selective polymers at the operating conditions of the power plant stack. Incorporation of nanofillers in polymer matrix resulting in formation of nanocomposite or mixed matrix membranes is a facile and efficient way towards this endeavor. Nanocomposite membranes can be prepared by physical blending [5-8] or chemical crosslinking [9, 10] with nanosized fillers.

Gas transport through a dense polymeric membrane follows the solution-diffusion mechanism. According to this mechanism, the penetrants (i.e. permeating gas molecules) are adsorbed at the feed side of the membrane, then diffuse across membrane and finally
desorb from the permeate side of the membrane. Permeability of a gas is a characteristic parameter for the membrane material which depends on the solubility and the diffusion coefficient of the penetrant in the polymeric membranes. [11, 12] Properties of both the penetrant and the polymer determine the transport of gases through the membrane. Small penetrant size, high polymer chain flexibility or high polymer fractional free volume and small polymer-penetrant interaction lead to enhanced gas diffusivity. On the other hand, strong polymer-penetrant interaction and high penetrant condensability increase the solubility. [13] Additionally, in polymer nanocomposite membranes interaction between the surface of the nanofiller with the surrounding polymer chains as well as with the permeating gases contributes to the gas transport to a great extent. Hence, one of the biggest concerns in nanocomposite membrane preparation is to decorate the surface of the nanoparticle with suitable functional group by covalent or non-covalent functionalization. Surface functionality of the nanofillers not only contributes to achieve homogeneous dispersion, but also creates an opportunity to tune the transport of penetrants through the membrane. [14, 15]

Advances in synthesis and functionalization of nanofillers have opened up a myriad of opportunities for tailoring the properties of traditional polymeric materials. However, in a block copolymer-nanoparticle composite the control of nanostructure and localization of nanoparticle as well as the fundamental understanding of structure-property relationship remains a challenge. The final morphology of the block copolymer nanocomposite is determined by a complex interplay of polymer conformational entropy, translational entropy of the nanoparticle and enthalpic interactions between the block copolymer
segment and surface functional group of the nanoparticle. Hence, it is essential to explore new methods and develop a fundamental understanding to exploit this interplay in order to design novel functional materials. [16-18]

Commercially available multiblock copolymers of the PEBAX® series consisting of an alternating sequence of flexible polyether and rigid polyamide blocks have already carved out a reputation as an appropriate choice for CO₂ separation membranes. Several studies on the structure and the gas transport properties of this block copolymer series have been reported. [19-22] Researchers have also tried to further explore the gas transport property of PEBAX® based gas separation membranes by incorporation of numerous fillers. [4, 15, 23-29] In a previous work, we have reported that PEG functionalized POSS nanoparticle is a suitable nanofiller to improve the commercial viability of block copolymer membranes containing poly(ethylene oxide) segments. [30, 31] Moreover, we have also reported PEG functionalized POSS nanoparticle containing an additional functionality can improve CO₂ separation property of PEBAX® MH 1657 membrane. [32] In this paper we discuss the influence of elevated temperature upon CO₂ separation and stability of the PEBAX® MH 1657 nanocomposite membranes containing 40wt% nanofiller aiming for post combustion carbon capture application.

2. Experimental part:

2.1. Materials:
PEBAX® MH 1657 was purchased from ARKEMA. Glycidyl POSS® and glycidyldimethylsilyl POSS® were purchased from Hybrid Plastics®. Methoxy poly(ethylene glycol) (PEG) (M_n = 350 g/mol) was purchased from Sigma-Aldrich®. All the solvents – chloroform, toluene, tetrahydrofuran and ethanol are purchased from Merck KGaA.

2.2. Membrane preparation:

The synthesized PEG modified POSS nanofillers were incorporated in PEBAX® MH 1657 (Arkema) via solution casting method. The nanofiller content was 40 wt% with respect to the final composition of the nanocomposite. 3 wt% solutions of mixture of polymer and filler were prepared in a mixture of ethanol/water (70/30 wt %) under reflux (80 °C) for 2h. The obtained homogeneous solution was cooled down to room temperature and poured into Teflon molds. Nanocomposite membranes were obtained by drying the solution at 40°C for 24 hours. The thickness of the membranes was measured by a digital micrometer.

2.3. Characterization:

A Veeco MultiMode NanoScope IV atomic force microscope (AFM) operating in TappingMode™ was used to investigate the cross sections of the membranes at room
temperature. Cross sections were prepared under cryogenic conditions with a Leica Cryo-Ultramicrotome EM UCT FCS equipped with a diamond knife.

A Zeiss “Merlin” scanning electron microscope (SEM) was applied to analyse the surface and cross section morphologies of the PEBAX® based membranes at an accelerating voltage of 900V. With an energy selective backscattered (EsB) in-column detector smallest differences in material composition of the membranes could be identified.

A DSC 1 (Star system) from Mettler Toledo was used to study the effect of incorporation of nanofillers upon thermal transitions of PEBAX® MH 1657 in the temperature range from -100 °C to 250 °C at the scan rate of 10 K/min using nitrogen as a purge gas stream (60 mL/min).

Single gas permeability, diffusion and solubility coefficients of N₂, H₂ and CO₂ were determined within the temperature range 30 °C to 70 °C via the constant volume, variable pressure (“time-lag”) method. The feed pressure was 1 bar for all the gases. The following equations were used to determine gas permeability (P), diffusion coefficient (D), solubility (S) coefficients and ideal selectivity for pure gases (αₐ/ₐ), respectively:

\[
P = D \cdot S = \frac{V_p \cdot l}{A \cdot R \cdot T \cdot \Delta t} \ln \left(\frac{p_f - p_{p1}}{p_f - p_{p2}} \right)
\]

\[
D = \frac{l^2}{6\theta}
\]
\[\alpha_{A/B} = \frac{P_A}{P_B} = \frac{D_A}{D_B} \cdot \frac{S_A}{S_B} \]

(3)

where, \(V_p \) is the permeate volume, \(l \) is the membrane thickness, \(A \) is the membrane area, \(R \) is the gas constant, \(p_f \) is the feed pressure considered constant in the time range \(\Delta t \), \(p_{p1} \) and \(p_{p2} \) are permeate pressures at time moment 1 and 2, \(\Delta t \) is the time difference between two points (1 and 2) on the pressure curve, \(\theta \) is the time lag, indexes A and B relates to gases chosen for calculation of permeability, diffusion and solubility selectivities.

3. Results and discussion:

Glycidyl POSS (Scheme 1a) and glycidyldimethylsilyl POSS (Scheme 1b) are successfully modified with PEG (Scheme 1c) using three different solvent (chloroform, toluene and THF) via epoxide ring opening reaction in presence of boron triflouride diethyletharate (Scheme 1d) catalyst at room temperature. A large excess of PEG is used in the reactions to make sure that the reaction proceeds to completion i.e. there is no unreacted epoxy ring left. Finally, the unreacted PEG is removed by extraction (using dicholoromethane and water). The reaction occurs via SN\(_2\) mechanism in three of the investigated solvents. The solvent used for functionalization has a pronounced influence upon the final product of the synthesis. For discussion in this manuscript these
nanoparticles are given acronyms (listed in Table 1). When toluene is used as solvent the reaction (i.e. in PEG-GLY-POSS-Toluene and PEG-GDMS-POSS-Toluene) occurs merely by nucleophilic attack of PEG and no by product is observed. In chloroform although ca. 80% of the epoxy rings are opened by PEG, some of the epoxy rings are opened by the catalyst itself (in PEG-GLY-POSS-Chloroform and PEG-GDMS-POSS-Chloroform). Tetrahydrofuran molecules form complex with the functionalized nanoparticles when it is used as solvent (i.e. in PEG-GLY-POSS-THF and PEG-GDMS-POSS-THF). The synthesis of these nanoparticles is discussed in detail elsewhere. [32]

| Table 1 |

3.1 Location of the nanoparticles in the prepared nanocomposite membranes via atomic force microscopy:

| Figure 1 |

TappingMode™ atomic force microscopy was used to investigate the cross section of PEBAX® MH 1657 block copolymer membrane and its nanocomposites after incorporation of 40 wt% nanofiller. Figure 1 shows the phase image of the cross section of PEBAX® MH 1657 membrane. Microphase separation of the polyether and polyamide blocks is clearly visible in this image. The contrast of this image is attributed to the
difference in viscoelastic properties of the two blocks. The brighter areas correspond to the polyamide hard phase, while the darker areas correspond to the softer phase of polyether. Figure 2 depicts the cross section of the nanocomposite membranes. The PEG functionalized POSS nanoparticles appear as white spots in the AFM image. Introduction of functionalized POSS nanoparticles have profound influence on the morphology, since the particle loading is very high. Compared to the pure PEBAX® MH 1657, the size of the polyether domains are increased in the nanocomposites which is attributed to the decrease of total polyamide content due to incorporation of PEG functionalized POSS nanoparticles. It is evident that the nanoparticles are located in the polyether domain of the nanocomposite membranes. This corresponds to the fact that the interaction between the PEG ligands of the nanoparticles with the polyamide domain of PEBAX® MH 1657 is unfavorable, while with the polyether domain it is less incompatible or neutral. Hence the PEG ligand makes the nanoparticles compatible to the polyether domain of PEBAX® MH 1657, regardless of the presence of the dimethylsilyl spacer (in PEG-GDMS-POSS-Chloroform and PEG-GDMS-POSS-Toluene) or the THF complex (in PEG-GLY-POSS-THF and PEG-GDMS-POSS-THF). But the distribution of POSS in the polyether domain is not same in six nanocomposites. It is worth mentioning that the AFM imaging parameter had to be adjusted for optimal observation of the different phases. As a result the density of white spots in Figure 2 a - f differ from each other although in every case the nanocomposite contains 40 wt% nanofiller. A careful comparison of the cross section of nanocomposites (Figure 2) shows that the organization of the PEG domains of the nanocomposites is also different. For example, in 40wt% PEG-GDMS-POSS-THF incorporated PEBAX® MH 1657 nanocomposite (Figure2f) polyamide domains are
bigger in size and in most case completely surrounded by polyether domains. On the other hand, 40 wt% PEG-GLY-POSS-Chloroform shows a more co-continuous nature and finer distribution of polyether and polyamide domains (Figure 2a). Thus the difference in structural features of the nanoparticles has a pronounced influence upon the final morphology of the nanocomposites. These results agree well with SEM measurements of the top surfaces and cross sections of these membranes using the nanoscale compositional information available from low-loss backscattered electrons. The bright features correspond to POSS agglomerates, the dark continuous areas correspond to PEG and the dispersed light areas are polyamide (results are shown in the supplement).

3.2 Gas separation performance:

Permeability of N₂, H₂ and CO₂ versus the reciprocal of temperature in Kelvin is plotted in Figure 3. Permeability of all the gases increases sharply with the increase of temperature. The nanocomposite membranes show substantially high N₂, H₂ and CO₂ permeability coefficients compared to the pure PEBAX® MH 1657. A careful comparison of CO₂ permeabilities of the studied nanocomposites reveals that 40 wt% incorporation of PEG-GLY-POSS-Chloroform and PEG-GLY-POSS-Toluene gives similar CO₂ permeability values at all temperatures in the range from 30 °C to 70 °C. Compared to
these membranes, the nanocomposite membranes containing other nanofillers have significantly higher CO$_2$ permeability. Among them the nanocomposite membranes containing PEG-GDMS-POSS-Chloroform, PEG-GDMS-POSS-Toluene and PEG-GLY-POSS-THF show similar permeability. But the highest value of permeability is demonstrated by the one containing 40 wt% PEG-GDMS-POSS-THF. Permeability of H$_2$ and N$_2$ show a similar trend (like permeability of CO$_2$) after incorporation of different fillers in PEBAX® MH 1657. The observations from Figure 3 confirm that within the temperature range from 30 ºC to 70 ºC, the presence of a dimethylsilyl spacer and a THF complex both lead to higher gas permeability. The nanoparticles synthesized using chloroform and toluene as solvents have similar influence upon gas permeability when incorporated in PEBAX® MH 1657.

Figure 4 depicts the permeability selectivity of CO$_2$ over H$_2$ and N$_2$ in the temperature range of 30°C to 70°C. CO$_2$/H$_2$ permeability selectivity and CO$_2$/N$_2$ permeability selectivity drop significantly with the increase of temperature. It is clear that the nanofillers do not have any influence on CO$_2$/H$_2$ permeability selectivity in this temperature range. CO$_2$/N$_2$ permeability selectivity remains unchanged in PEG-GLY-POSS-Chloroform and PEG-GLY-POSS-Toluene incorporated nanocomposite membranes. At 30°C the CO$_2$/N$_2$ permeability selectivity of the nanocomposites containing the other four fillers are lower than that of the pure PEBAX® MH 1657 membrane. But the difference in selectivity becomes narrower as the temperature increases and finally at 70°C there is no significant difference in CO$_2$/N$_2$ permeability.
selectivity between PEBAX® MH 1657 and its nanocomposites (discussed later in section 4.2).

In pure PEBAX® MH 1657 membrane and the nanocomposite membranes the diffusion coefficient of CO$_2$ shows a sharp rise as the temperature is increased from 30 °C to 70 °C (Figure 5). Meanwhile the CO$_2$ solubility follows a decreasing trend with increasing temperature. It is evident that the CO$_2$ diffusion coefficient of PEG-GLY-POSS-Chloroform and PEG-GLY-POSS-Toluene incorporated nanocomposite membranes are similar to that of pure PEBAX® MH 1657 membrane. The other fillers lead to higher values of diffusion coefficients. On the other hand, CO$_2$ solubility of all the nanocomposite membranes is higher than that of PEBAX® MH 1657 membrane. But the values of CO$_2$ solubility of different nanocomposite membranes are analogous as the error bars overlap each other. The permeability, diffusion and solubility of CO$_2$ are correlated with Arrhenius and Van’t Hoff equations, in order to further explore the temperature dependence of CO$_2$ transport.

\[
P = P_o \exp \left(\frac{-E_p}{RT} \right) \tag{4} \]

\[
D = D_o \exp \left(\frac{-E_d}{RT} \right) \tag{5} \]

\[
S = S_o \exp \left(\frac{-\Delta H_s}{RT} \right) \tag{6} \]
Here, P_o, D_o and S_o are pre-exponential constants, E_P is the activation energy of permeation, E_D is the activation energy of diffusion and ΔH_S is the enthalpy of sorption. Equation 1, 4, 5 and 6 indicates that E_P is simply the sum of E_D and ΔH_S.

$$E_P = E_D + \Delta H_S$$

(7)

In this study E_P was calculated from the slope of $ln P$ vs. $1/T$ (using Equation 4), E_D was calculated from the slope of $ln D$ vs. $1/T$ (using Equation 5) and ΔH_S from Equation 7. Comparison of E_P, E_D and ΔH_S (from Table 2) provides a fundamental guideline to understand the influence of nanofillers upon the transport behavior of CO$_2$ through the nanocomposite membranes. However, the determination of these parameters encounters the difficulty that in some cases the logarithmic plots do not generate completely straight lines as in the case of CO$_2$. A linear regression is used to calculate the slope. Therefore, the inherent error in the determination of these parameters must also be taken into account. Only significant changes of the parameters can be used to compare the influence of different structural features of the nanofillers on the CO$_2$ transport through the nanocomposite membranes.

| Table 2 |

A positive value of E_P corresponds to an increase of permeability with increasing temperature. A significant drop of E_P can be noticed in the nanocomposite membranes compared to the pure polymer membrane. From Table 2 it is evident that, the lower value
of E_P in the nanocomposite membranes is largely due to the lower value of E_D. Moreover, PEG-GDMS-POSS-Chloroform, PEG-GDMS-POSS-Toluene and PEG-GDMS-POSS-THF contributed more to the drop of E_P and E_D than PEG-GLY-POSS-Chloroform, PEG-GLY-POSS-Toluene and PEG-GLY-POSS-THF, respectively. A negative value of ΔH_S is characteristic for decrease of sorption with increase of temperature. However, it is clear from Table 2 that the values of ΔH_S are too close to each other to make any comparison about the sorption environment of the CO$_2$ molecule in presence of different fillers but for all studied fillers the ΔH_S values never exceed that of pure PEBAX® MH 1657.

3.3 Differential scanning calorimetry:

Glass transition temperature (T_g) of the polyether blocks of PEBAX® MH 1657, the nanofillers and the nanocomposites are tabulated in Table 3. The PEG ligands of the nanofillers have lower T_g compared to the polyether segments of PEBAX® MH 1657. It implies that the mobility of the PEG ligands are higher compared to the polyether segments of PEBAX® MH 1657. T_g of the polyether segment of the nanocomposites are lower compared to that of PEBAX® MH 1657. Since the nanofillers are located in the polyether domain (section 3.1) and the T_g of the blocks of PEBAX® MH 1657 decreases after incorporation of the nanofillers it is evident that the PEG ligand of the nanofillers plasticizes the polyether segments of PEBAX® MH 1657. Moreover, the glass transition temperatures of PEG-GDMS-POSS-Chloroform and PEG-GDMS-POSS-Toluene are
significantly lower than those of PEG-GLY-POSS-Chloroform and PEG-GLY-POSS-Toluene. Interestingly, PEG-GLY-POSS-THF and PEG-GDMS-POSS-THF exhibit lower glass transition temperatures than the other nanoparticles. The nanocomposite membranes show lower T_g compared to PEBAX® MH 1657. The decrease of T_g is more significant for nanocomposites containing PEG-GDMS-POSS-Chloroform, PEG-GDMS-POSS-Toluene and PEG-GLY-POSS-THF, compared to PEG-GLY-POSS-Chloroform and PEG-GLY-POSS-Toluene containing nanocomposites (discussed later in section 4.1). In case of PEG-GDMS-POSS-THF incorporated nanocomposite the T_g is not clearly visible.

To investigate the melting and crystallization behavior of the functionalized nanoparticles the thermal history was erased by heating up to 100 °C and then they were cooled down to -100 °C. Figures 6a & Figure 6b show the second heating and second cooling trace of the DSC run. Except PEG-GDMS-POSS-THF the ligand attached to other synthesized nanoparticles exhibit cold crystallization on the heating cycle and do not crystallize on the cooling cycle of the DSC run. The weight of PEG ligands attached to nanoparticles is $M_n=350$ g/mol and is probably too small to crystallize during the cooling cycle at 10 K/min, which accounts for the cold crystallization behavior observed during heating cycle. For PEG-GDMS-POSS-Chloroform and PEG-GDMS-POSS-Toluene the onset of cold crystallization are -50 °C and -44 °C while the heat of cold crystallization are 20 J/g & 21 J/g. But for both PEG-GLY-POSS-Chloroform and PEG-GLY-POSS-Toluene the
Onsets of cold crystallization are -26 °C and the heat of cold crystallization is 2 J/g. The enthalpies of crystallization are normalized to the total mass of sample on the pan. Thus on the heating cycle of the DSC run the nanoparticles containing the dimethylsilyl spacer exhibit the cold crystallization at significantly lower temperature and evolve approximately 10 times more heat per unit mass of the nanoparticle. Interestingly the onset and heat of cold crystallization of PEG-GLY-POSS-THF is -47 °C and 18 J/g respectively. For PEG-GDMS-POSS-THF nanoparticle although a small trace of cold crystallization was observed during heating cycle, major portion of the crystallization starts at -33 °C already while cooling down from the melt and the heat of crystallization is 18 J/g. It is worth mentioning that third and fourth heating and cooling cycles in the temperature range -100 °C to 150 °C produce thermograms similar to the second heating & cooling cycle presented in Figure 6. Hence it is evident that the presence of dimethylsilyl spacer as well as the THF complex (in PEG-GLY-POSS-THF and PEG-GDMS-POSS-THF) facilitates the crystallization of PEG ligand.

Figure 7a depicts the temperature protocol of DSC runs for PEBAX® MH 1657 and its nanocomposites while Figure 7b illustrates the DSC thermogram of PEBAX® MH 1657. This temperature protocol is designed to study the influence of melting of the polyether blocks and the polyamide blocks upon the stability of nanocomposites. The sample is heated up to 100 °C (step 1) to remove the residual solvents and moisture, followed by a 5 min isotherm at 100 °C (step 2). At this stage only the polyether block of PEBAX® MH
1657 is in molten form. The crystallization of polyether block starts at -5 °C and ends at -22 °C as the sample is cooled down to -100 °C (step 3). The sample is heated to 100 °C and cooled down to -100 °C for two more times (steps 4 - 12). The cooling traces of step 7 and 11 show that while cooling down from 100 °C the exothermic peak of crystallization of polyether blocks appears at the same temperature. In step 13 the sample is heated up to 250 °C to melt both the polyether and the polyamide block. The cooling trace of step 15 shows that the crystallization exotherm of polyether blocks shifts to a lower temperature (onset -11 °C and endset -26 °C) compared to those observed in step 3, 7 and 11. The heating trace of step 17 shows that the melting endotherm of polyether blocks is slightly shifted to a lower temperature too, but the shape of the peak is unchanged. DSC thermograms of the nanocomposites (obtained using the temperature protocol presented in Figure 7a) are depicted in Figure 8. The cooling traces of step 3, 7 and 11 show that the crystallization exotherms of polyether domain are identical. Similarly in step 5, 9 and 11 the melting endotherms of polyether domains are identical. Moreover, although these nanocomposites contain 40 wt% of nanofiller, no recrystallization of polyether is observed in these steps. It is evident that due to the high compatibility between the PEG ligand of the nanofillers and polyether segment of the block copolymers, they crystallize together during the cooling cycle of the DSC runs. However, compared to pure PEBAX® MH 1657 broadening of the polyether domain melting endotherms and crystallization exotherms was observed in the nanocomposites. Contrariwise, when both the polyether and the polyamide blocks are completely melted (by heating up to 250 °C in step 13), in the subsequent cooling and heating trace, i.e. step 15 and step 17 substantial change is observed in the crystallization exotherm and
melting endotherm of the polyether blocks. In Figure 8 c, d and e recrystallization of PEG ligand of the nanofillers is observed prior to the melting endotherm in step 17. In Figure 8f two separate crystallization exotherms and melting endotherms are clearly visible for the PEG ligands of the nanofiller and polyether domain of the block copolymer.

It is evident from the DSC study that as long as the nanocomposites were heated up to 100 °C and cooled down to -100 °C to operate solely with the polyether domains, the nanocomposites were quite stable (since the melting and crystallization of the of the polyether domain remains unchanged even after three thermal cycles), but when the polyamide blocks are completely melted (by heating up to 250 °C in step 13), in the subsequent cooling step the block copolymer matrix start to reject a fraction of the nanofillers and they crystallize separately from the polymer matrix.

4. Discussion:

4.1. Influence of structural features of the nanofillers upon gas permeation:

The diffusion coefficient for a given gas molecule in amorphous or rubbery polymer membranes is related to the dynamics or mobility of the polymer chains. E_D is the energy required for a gas molecule to execute a diffusive jump. In rubbery polymers, at elevated
temperature the increase of polymer chain motion leads to the formation of transient chain gaps more frequently that enable easier penetrant diffusive jumps from one equilibrium site to another. As a result, higher temperature leads to an enhancement of the diffusion coefficient and it follows ultimately an increased permeability. This phenomenon is apparently well known and is regarded as typical for amorphous polymer membranes.[33] In the prepared nanocomposite membranes the PEG grafted nanoparticles are located in polyether domains (presented in Figure 2). Moreover, the T_g of the polyether domains of the nanocomposites are significantly lower than that of pure PEBAX® MH 1657 membrane (listed in Table 3). As T_g is a crude indicator of the mobility of polymer segments, it is evident that the mobility of polyether segments of the nanocomposites is higher than that of PEBAX® MH 1657 membrane. Additionally, higher diffusion coefficients accompanied with lower values of E_D of the nanocomposite membranes reveal that, due to the higher chain mobility the permeating CO$_2$ molecules experience lower resistance to diffusive jumps in the nanocomposite membranes compared to pure PEBAX® MH 1657. Besides, T_g (listed in Table 2) and E_D (listed in Table 3) values are significantly lower for the nanocomposites which contain the nanoparticles that have the dimethylsilyl spacer. These observations indicate that in studied nanocomposite membranes the mobility of the polyether segments surrounding the nanoparticles having dimethylsilyl spacer is higher compared to the nanocomposites where the nanoparticles do not have such moiety. It is well-known that the polymers containing flexible Si-O linkage in the main and side chains exhibits high gas permeability which stems from the low energy barrier of rotation of the Si-O linkage of the dimethylsilyl group.[34] In the PEG grafted nanoparticles obtained from glycidyl
POSS (Scheme 1a) and glycidyldimethylsilyl POSS (Scheme 1b) the ligands are connected to the silsesquioxane core through Si-C and Si-O bonds, respectively. For this reason, the presence of the dimethylsilyl group in between the cage structure of POSS and PEG ligand increases the flexibility of PEG ligands (discussed in section 3.3) which eventually leads to higher segmental mobility of polyether blocks of PEBAX® MH 1657 in the nanocomposite membranes. Although it is evident that the THF complex (in PEG-GLY-POSS-THF and PEG-GDMS-POSS-THF) leads to similar phenomenon, the interaction between the THF complex and polyether domain of the block copolymer is not completely clear from the results available at present.

4.2 Influence of nanofiller upon selectivity of CO$_2$ over N$_2$ and H$_2$:

At 30 °C CO$_2$/N$_2$ permeability selectivity in PEBAX® MH 1657 is five times higher than that of CO$_2$/H$_2$ selectivity (Figure 4). The diffusion of CO$_2$ in PEBAX® MH 1657 membrane (Figure 5) is analogous to that of N$_2$ (supplementary information S3) and lower than that of H$_2$ (supplementary information S4) which becomes more obvious from a comparison of the diffusion selectivity of CO$_2$/H$_2$ and CO$_2$/N$_2$ gas pairs. At 30 °C the CO$_2$/N$_2$ diffusion selectivity (supplementary information S3) is ca. 0.8 (i.e. close to 1) while the CO$_2$/H$_2$ diffusion selectivity is ca. 0.1 only. This phenomenon is attributed to the ratio of kinetic diameters of CO$_2$, N$_2$ and H$_2$. [13] But CO$_2$ enjoys much higher solubility in PEBAX® MH 1657 (Figure 5) membrane compared to N$_2$ and H$_2$ (supplementary information S3 and S4) which is attributed to high condensability of CO$_2$ and the quadrapole-dipole interaction between CO$_2$ and polar ether oxygen of the
membrane. [13] Therefore the relatively higher permeation of CO$_2$ compared to H$_2$ i.e. CO$_2$/H$_2$ selectivity suffers from the fact that the advantage of higher solubility of CO$_2$ is largely offset by higher diffusion of H$_2$ which leads to very low CO$_2$/H$_2$ selectivity.

In the nanocomposite membrane CO$_2$/H$_2$ permeability selectivity remains unchanged. At 30 °C the nanocomposites containing PEG-GLY-POSS-THF, PEG-GDMS-POSS-Chloroform, PEG-GDMS-POSS-Toluene, and PEG-GDMS-POSS-THF shows slightly lower value of CO$_2$/N$_2$ permeability selectivity than PEBAX® MH 1657. Hence, the nanofillers containing the dimethylsilyl spacer and the THF complex have a small but statistically significant influence on CO$_2$/N$_2$ permeability selectivity of the nanocomposite membranes but not on CO$_2$/H$_2$ permeability selectivity. In these nanocomposite membranes the solubility of N$_2$ and H$_2$ is slightly higher and the solubility selectivity of CO$_2$/N$_2$ and CO$_2$/H$_2$ is lower compared to PEBAX® MH 1657 (supplementary information S3 to S6). This small change of solubility leads to marginal loss of CO$_2$/N$_2$ permeability selectivity at 30 °C (as the diffusion selectivity is close to unity). On the other hand the low value of CO$_2$/H$_2$ permeability selectivity (which is highly offset by the much higher diffusion of smaller H$_2$ compared to that of CO$_2$) is not influenced by such small change of solubility.

The CO$_2$/N$_2$ permeability selectivity decreases in all the membranes with increasing temperature and follows similar trend. At elevated temperature (e.g. 70 °C) the values of CO$_2$/N$_2$ selectivity of the membranes differ less from each other. An increase of temperature leads to higher kinetic energy of the permeating gas molecules & higher
mobility of polymer chains of the amorphous polyether block. As a result diffusion of the gases increases significantly but solubility decreases. For example, CO₂ diffusion in PEBAX® MH 1657 increases four times as the temperature is increased from 30 °C to 70 °C while CO₂ solubility decreases significantly (Figure 5). Hence, at elevated temperature (e.g. 70 °C) the permeation of gas molecules are dominated more by diffusion than solubility. In these circumstances the values CO₂/N₂ selectivity of the nanocomposites and PEBAX® MH 1657 become analogous.

4.3 Influence of temperature upon stability of the membrane:

Thermoplastic elastomeric block copolymers having alternating hard and soft blocks are often considered as systems where the hard blocks (having high glass transition and melting temperature) act as virtual physical crosslinks between the soft blocks. [35, 36] In contrast to the covalently crosslinked systems, in this case at a temperature where the hard block is in a molten state this physical crosslinking does not exist anymore. From section 3.1 it is evident that when the nanocomposite membranes are prepared by a solution casting method, the PEG functionalized POSS nanoparticles are located in the polyether domains of the block copolymer nanocomposite system due to unfavorable interaction with the polyamide blocks. Since for post combustion carbon capture the application temperature is between 50 °C to 60 °C (explained in section 1), the gas permeability measurements were done between 30 °C to 70 °C (plotted in Figure 3). In this temperature range the polyether block is molten but the polyamide block remains in a crystalline state. From the DSC study in section 3.3 it is clear that the nanocomposite
membranes are quite stable in a temperature range where the polyamide block is not in a molten state. In other words, in the expected temperature range of post combustion carbon capture the physical crosslinking provided by the crystalline polyamide blocks exists and the nanoparticles are securely trapped in the amorphous polyether blocks. Once the hard block melts the physical crosslinking is destroyed and the nanocomposite obtains the possibility for reorganization of block copolymer’s domains during the material cooling. In this circumstance the matrix starts to reject the nanoparticles from the polyether domains and the nanocomposites are not stable anymore. Hence, the application of nanocomposite membranes based on block copolymers with hard and soft domains is limited to a temperature range where the melting of the hard domain does not occur.

5. Conclusion:

This paper demonstrates that it is possible to regulate the gas transport through PEG functionalized POSS nanoparticle incorporated PEBAX® MH 1657 membrane by taking advantage of the flexibility of Si-O bond as a linkage between the core and the ligand of the nanoparticle. Furthermore, it shows that the THF complex (in PEG-GLY-POSS-THF and PEG-GDMS-POSS-THF) is also a useful structural feature to fabricate nanocomposite membranes. Both the dimethylsilyl spacer between the cage structure of POSS and PEG ligand and the THF complex can substantially improve the CO₂ permeability of the PEBAX® MH 1657 nanocomposite membrane without significant
loss of selectivity. This concept can be instrumental in designing next generation nanocomposite membranes for post combustion carbon capture. The operation temperature of the separation process implementing the studied block-copolymer based nanocomposite membranes is limited by the melting temperature of hard domains of the block copolymer. As the expected temperature range (50 – 60 °C) of CO₂ separation process in post combustion carbon capture technology is marginally below the melting temperature of hard block (above 100 °C) the nanocomposites presented here are suitable materials for this application.

Acknowledgment:

This work was financially supported the Helmholtz Association of German Research Centres through the Helmholtz Portfolio MEM-BRAIN.

References:

[34] Y. Kawakami, I. Imae, Functionality and stereochemical design of silicon-containing polymers, Macromolecular Chemistry and Physics, 200 (1999) 1245-1256.

List of legends:

Scheme Caption:

Scheme I: Structure of a) glycidyl POSS b) glycidyldimethylsilyl POSS c) methoxy poly(ethylene glycol) (PEG) d) boron trifluoride diethyletherate.
Figure Captions:

Figure 1: AFM image of the cross section of a PEBAX® MH1657 membrane.

Figure 2: Cross section of nanocomposites of PEBAX MH 1657 containing 40 wt% of: - a) PEG-GLY-POSS-Chloroform b) PEG-GLY-POSS-Toluene c) PEG-GLY-POSS-THF d) PEG-GDMS-POSS-Chloroform e) PEG-GDMS-POSS-Toluene f) PEG-GDMS-POSS-THF.

Figure 3: Permeability of gases as a function of temperature of PEBAX® MH 1657 and nanocomposites containing 40 wt% nanofiller.

Figure 4: CO₂ permeability selectivity over N₂ and H₂ as a function of temperature of PEBAX® MH 1657 and nanocomposites containing 40 wt% nanofiller.

Figure 5: Solubility and diffusion coefficient of CO₂ as a function of temperature of PEBAX® MH 1657 and nanocomposites containing 40 wt% nanofiller.

Figure 6: DSC thermogram of synthesized nanofillers a) 2nd heating trace b) 2nd cooling trace.
Figure 7: a) Temperature protocol of DSC run b) DSC thermogram of PEBAX® MH 1657.

Figure 8: DSC thermogram (second cooling trace) of the nanocomposites of PEBAX® MH 1657 containing (a) PEG-GLY-POSS-Chloroform (b) PEG-GLY-POSS-Toluene (c) PEG-GLY-POSS-THF (d) PEG-GDMS-POSS-Chloroform (e) PEG-GDMS-POSS-Toluene (f) PEG-GDMS-POSS-THF.

Table captions:

Table 1: Acronyms of the products of epoxy ring opening reaction.

Table 2: Comparison of E_D, E_D and ΔH_S of CO$_2$ transport through nanocomposites containing different nanofillers.

Table 3: Glass transition temperature of PEBAX® MH 1657, the nanofillers and the nanocomposites.
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
<table>
<thead>
<tr>
<th>Acronym of product</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEG-GLY-POSS-Chloroform</td>
<td>PEG modified Glycidyl POSS using Chloroform as solvent</td>
</tr>
<tr>
<td>PEG-GDMS-POSS-Chloroform</td>
<td>PEG modified Glycidyldimethylsilyl POSS using Chloroform as solvent</td>
</tr>
<tr>
<td>PEG-GLY-POSS-Toluene</td>
<td>PEG modified Glycidyl POSS using Toluene as solvent</td>
</tr>
<tr>
<td>PEG-GDMS-POSS-Toluene</td>
<td>PEG modified Glycidyldimethylsilyl POSS using Toluene as solvent</td>
</tr>
<tr>
<td>PEG-GLY-POSS-THF</td>
<td>PEG modified Glycidyl POSS using THF as solvent</td>
</tr>
<tr>
<td>PEG-GDMS-POSS-THF</td>
<td>PEG modified Glycidyldimethylsilyl POSS using THF as solvent</td>
</tr>
<tr>
<td></td>
<td>E_p (kJ/mol)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PEBAX® MH 1657</td>
<td>18.7</td>
</tr>
<tr>
<td>PEBAX® MH 1657 + 40% PEG-GLY-POSS Chloroform</td>
<td>16.1</td>
</tr>
<tr>
<td>PEBAX® MH 1657 + 40% PEG-GDMS-POSS Chloroform</td>
<td>15.2</td>
</tr>
<tr>
<td>PEBAX® MH 1657 + 40% PEG-POSS Toluene</td>
<td>15.9</td>
</tr>
<tr>
<td>PEBAX® MH 1657 + 40% PEG-GDMS-POSS Toluene</td>
<td>14.6</td>
</tr>
<tr>
<td>PEBAX® MH 1657 + 40% PEG-POSS THF</td>
<td>15.4</td>
</tr>
<tr>
<td>PEBAX® MH 1657 + 40% PEG-GDMS-POSS THF</td>
<td>14.3</td>
</tr>
</tbody>
</table>
Table 3

<table>
<thead>
<tr>
<th></th>
<th>T<sub>g</sub> (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanofiller</td>
<td>-59 ±0.1</td>
</tr>
<tr>
<td>PEBAX® MH 1657 +</td>
<td></td>
</tr>
<tr>
<td>40 wt% nanofiller</td>
<td>-54 ± 0.3</td>
</tr>
<tr>
<td>PEBAX® MH 1657</td>
<td></td>
</tr>
</tbody>
</table>
S 1: Surface of the PEBAX® MH 1657 nanocomposites containing 40 wt% – (a) PEG-GLY-POSS-Chloroform (b) PEG-GLY-POSS-Toluene (c) PEG-GLY-POSS-THF (d) PEG-GDMS-POSS-Chloroform (e) PEG-GDMS-POSS-Toluene (f) PEG-GDMS-POSS-THF.
S 2: Cross section of the PEBAX® MH 1657 nanocomposites containing 40 wt% – (a) PEG-GLY-POSS-Chloroform (b) PEG-GLY-POSS-Toluene (c) PEG-GLY-POSS-THF (d) PEG-GDMS-POSS-Chloroform (e) PEG-GDMS-POSS-Toluene (f) PEG-GDMS-POSS-THF.
S 3: Diffusion and solubility of N\textsubscript{2} as a function of temperature of PEBAX® MH 1657 and nanocomposites containing 40 wt% nanofiller.
S 4: Diffusion and solubility of H$_2$ as a function of temperature of PEBAX® MH 1657 and nanocomposites containing 40 wt% nanofiller.
S 5: Diffusion selectivity and solubility selectivity of CO$_2$ over N$_2$ as a function of temperature of PEBAX® MH 1657 and nanocomposites containing 40 wt% nanofiller.
S 6: Diffusion selectivity and solubility selectivity of CO$_2$ over H$_2$ as a function of temperature of PEBAX® MH 1657 and nanocomposites containing 40 wt% nanofiller.