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ABSTRACT: Diffusive convection can occur when two constituents of a stratified fluid have opposing effects on its

stratification and different molecular diffusivities. This form of convection arises for the particular temperature and salinity

stratification in the Arctic Ocean and is relevant to heat fluxes. Previous studies have suggested that planetary rotation may

influence diffusive–convective heat fluxes, although the precise physical mechanisms and regime of rotational influence are

not well understood. A linear stability analysis of a temperature and salinity interface bounded by two mixed layers is

performed here to understand the stability properties of a diffusive–convective system, and in particular the transition from

nonrotating to rotationally controlled heat transfer. Rotation is shown to stabilize diffusive convection by increasing the

critical Rayleigh number to initiate instability. In the rotationally controlled regime, a24/3 power law is found between the

critical Rayleigh number and the Ekman number, similar to the scaling for rotating thermal convection. The transition from

nonrotating to rotationally controlled convection, and associated drop in heat fluxes, is predicted to occur when the thermal

interfacial thickness exceeds about 4 times the Ekman layer thickness. A vorticity budget analysis indicates how baroclinic

vorticity production is counteracted by the tilting of planetary vorticity by vertical shear, which accounts for the stabilization

effect of rotation. Finally, direct numerical simulations yield generally good agreementwith the linear stability analysis. This

study, therefore, provides a theoretical framework for classifying regimes of rotationally controlled diffusive–convective

heat fluxes, such as may arise in some regions of the Arctic Ocean.

KEYWORDS: Diffusion; Diapycnal mixing; Numerical analysis/modeling

1. Introduction

Double diffusion is a type of convection that may occur when

two constituents of a stably stratified fluid have opposing density

stratification and different molecular diffusivities (Radko 2013).

The classic example is oceanic double diffusion that can be ac-

tive for certain temperature and salinity stratifications because

thermal diffusivity is approximately 100 times larger than the

diffusivity of salt (e.g., Schmitt 1994). One mode of double dif-

fusion, known as diffusive convection, can arise when temper-

ature and salinity both increase with depth. Consider, for

example, a relatively cold and fresh water layer overlying a

(more dense) relatively warm and salty layer (Turner and

Stommel 1964). Between the two layers the diffusive thermal

interface grows faster than the haline interface. This sets up the

formation of gravitationally unstable diffusive boundary layers

at the edges of the interface (Fig. 1), and when conditions are

favorable, convection is triggered. The subsequent vertical

fluxes of heat and salt across the interface are of primary interest,

and a number of parameterizations for diffusive–convective

fluxes have been developed (e.g., Turner 1965; Linden and

Shirtcliffe 1978; Kelley 1990; Flanagan et al. 2013). Note that the

heat and salt of the oceanic setting can be replaced by any two

fluid constituents (i.e., a two-component system) that have dif-

ferent diffusivities, and double diffusion has been studied in a

variety of other settings, including planetary interiors and stellar

evolution (see, e.g., Radko 2013).

The Arctic Ocean, characterized by relatively cool and fresh

water overlying relatively warm and salty water, presents a well-

recognized example of diffusive convection at middepth in its

water column (e.g., Neal et al. 1969; Neshyba et al. 1971; Padman

andDillon 1987; Timmermans et al. 2008;Guthrie et al. 2015). The

process manifests itself as stacked layers, each of uniform tem-

perature and salinity, separated by relatively thin high-gradient

interfaces—a diffusive–convective staircase. Diffusive convection

is an important mechanism for transporting heat from the deeper,

warmer ocean layers toward the surface ocean and overlying sea

ice (e.g., Polyakov et al. 2012; Carmack et al. 2015). Reliable pa-

rameterized estimates of these heat fluxes are needed where tur-

bulence observations are sparse and logistically challenging to

acquire. Planetary rotation, however, is usually not accounted

for in heat flux parameterizations, although its influence may be

important in certain settings (Kelley 1987; Carpenter and

Timmermans 2014). In particular, Carpenter and Timmermans

(2014) found that the influence of planetary rotation may limit

double-diffusive heat fluxes in some regions of the Arctic Ocean

where staircase interfaces are relatively thick. In this study, we

explore the influence of Earth’s rotation on diffusive–convective

heat fluxes. For direct comparison with the results of Carpenter

and Timmermans (2014), who considered the Arctic setting in

particular, in our analysis we use parameters consistent with

those that characterize the Arctic Ocean’s diffusive–convective

staircase.

Past studies have shown that planetary rotation can in-

hibit pure thermal convection and the associated heat fluxes

(e.g., Chandrasekhar 1953; Niiler and Bisshopp 1965; Rossby

1969; King et al. 2012).This is explained as a result of theCorresponding author: Yu Liang, yu.liang@yale.edu
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suppression of vertical motion through the Taylor–Proudman

effect (Chandrasekhar 2013). Considering measurements from

rotating thermal convection experiments, Kelley (1987) derived

an empirical criterion to indicatewhen diffusive–convective heat

fluxes may be affected by rotation. Carpenter and Timmermans

(2014) reformulated Kelley’s condition in terms of the relative

thicknesses of the Ekman layer and the thermal interface, and

tested this via direct numerical simulation (DNS) of diffusive

convection. Their simulations provided support for Kelley’s re-

sults, demonstrating that heat fluxes can be strongly inhibited by

rotation when the thickness of the thermal interface is around 5

times the thickness of the Ekman boundary layer. A precise

physical interpretation of this transition remains to be described.

In this study, we examine the linear stability properties

of a double-diffusive system, with a focus on the diffusive–

convective mode, to understand the transition to rotationally

controlled heat transfer. Instability of a double-diffusive

system was first shown via linear stability analysis (LSA)

applied to a fluid layer characterized by linear background

temperature and salinity stratification (Stern 1960; Veronis

1965; Nield 1967; Baines and Gill 1969; Pearlstein 1981).

Compared to this system, diffusive–convective staircases,

characterized by sharp interfaces in temperature and salinity

that are bounded by two mixed layers (Fig. 1), have been

shown to have considerably different linear stability prop-

erties (Carpenter et al. 2012b; Smyth and Carpenter 2019).

Here, we extend the analysis of Carpenter et al. (2012b) to

include the effects of planetary rotation in a LSA, and ex-

amine for what regime and how rotation influences diffusive

convection. We show that physical insights into the effects of

rotation on diffusive–convective heat fluxes can be gained

through examination of the LSA solutions.

The paper is organized as follows. In the next section, we

formulate and solve the LSA, showing consistency with the

Kelley condition for the transition from the nonrotating to

the rotationally controlled regime for diffusive–convective

heat fluxes. We then examine the LSA solutions in the con-

text of the vorticity balance to demonstrate the mechanism by

which the influence of rotation inhibits the vertical transfer of

properties. In section 3, we validate our LSA-based transition

criterion using DNS, and summarize and discuss our results in

section 4. While we explore a parameter regime relevant to

diffusive convection in the Arctic Ocean, our approach and

findings may be generalized to other diffusive–convective

settings.

2. Linear stability analysis

a. Formulation and solution

We consider a three-dimensional Boussinesq fluid layer of

infinite horizontal extent on an f plane (i.e., with a fixed rate of

rotation). Let T and S be temperature and salinity, respec-

tively, such that density r may be written as

r5 r
0
[11b(S2S

0
)2a(T2T

0
)] , (1)

where r0, T0, and S0 are reference values for density, temper-

ature, and salinity, respectively, and thermal expansion coef-

ficient a and haline contraction coefficient b are assumed to be

constant. Conservation of momentum and mass are given by

›v

›t
1 v � =v52

1

r
0

=p1
r

r
0

g1 n=2v2 2V3 v , (2)

= � v5 0, (3)

where v5 (u, y, w) is the three-dimensional velocity vector, p

is pressure, g5 (0, 0, 2g) is gravitational acceleration, n is

molecular viscosity, and V5 (0, 0, f /2) is the vertical angular

velocity where f is the Coriolis parameter. Advection–diffusion

equations for T and S are given by

›T

›t
1 v � =T5 k

T
=2T , (4)

›S

›t
1 v � =S5k

S
=2S , (5)

where kT and kS are the molecular diffusivities of temperature

and salinity, respectively.

Let us consider perturbations about a motionless back-

ground state and write

T5T1 ~T , S5 S1 ~S, r5 r1 ~r, v5 ~v, p5 p1 ~p , (6)

where the tilde indicates perturbation quantities from the

background states denoted by overbars. The background

pressure is hydrostatic and the background density profile can

be written as

r(z)5 r
0
f11b[S(z)2S

0
]2a[T(z)2T

0
]g . (7)

The vertical structure of the T(z) and S(z) profiles will be

chosen to resemble the layer and interface structure that is

present in diffusive convective staircases, as shown in Fig. 1.

FIG. 1. Schematic of a diffusive–convective interface. Red and

blue lines indicate background temperature and salinity profiles,

and the black line indicates the background density. Horizontal

gray bars mark the gravitationally unstable boundary layers, which

are bounded by specified values of vertical gradients of background

density (see text). Themixed layer in the top half of the domain and

the stable interface core are also marked; hT and hS are tempera-

ture and salinity interfacial thicknesses, respectively.
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We substitute (6) into the governing equations and linearize

to obtain

›~j

›t
2 n=2~j2 2V

› ~w

›z
5 0, (8)

�
›

›t
2 n=2

�
=2 ~w1 2V

›~j

›z
1 g=2

h(b
~S2a ~T)5 0, (9)

› ~T

›t
1 ~w

›T

›z
2k

T
=2 ~T5 0, (10)

›~S

›t
1 ~w

›S

›z
2k

S
=2 ~S5 0, (11)

where ~j5 ›~y/›x2 ›~u/›y is the vertical component of relative

vorticity and =2
h 5 ›2/›x2 1 ›2/›y2. Note that here we assume

the background temperature and salinity (T , S) do not diffuse

with time, which has important consequences for the nature of

the instability, and for the results of this study. We discuss this

assumption in greater detail later in the paper (see also

Carpenter et al. 2012b for a discussion).

It is convenient to nondimensionalize this system. We first

introduce the thermal interfacial thickness hT and the haline

interfacial thickness hS

h
T
5

�����DT=›T

›z

�����
z50

�����, h
S
5

�����DS=›S

›z

�����
z50

����� (12)

where z 5 0 indicates that the derivative is calculated at the

center of the interface (see Fig. 1) and j j indicates the absolute
value. Temperature and salinity scales DT and DS are the

temperature and salinity differences across the diffusive in-

terface, respectively.

A velocity scale kT /hT and a time scale h2
T /kT can be de-

fined in terms of the thermal interfacial thickness hT.

Nondimensionalizing (8)–(11) yields (asterisks denote non-

dimensional variables):

›j*
›t*

2Pr=2

*j*2
Pr

Ek
I

›w*
›z*

5 0,

(13)�
1

Pr

›

›t*
2=2

*

�
=2

*w*1
1

Ek
I

›j*
›z*

1Ra
I
=2
h*(Rr

S*2T*)5 0,

(14)

›T*
›t*

1w*

›T*
›z*

2=2

*T*5 0,

(15)

›S*
›t*

1w*

›S*
›z*

2 t=2

*S*5 0,

(16)

where EkI 5 n/(2Vh2
T) and RaI 5 gaDTh3

T /(nkT) are interfacial

Ekman and Rayleigh numbers, Pr5 n/kT is the Prandtl num-

ber, t5kS/kT , and Rr 5 bDS/(aDT) are diffusivity and

density ratios.

Following Carpenter et al. (2012b), we consider background

temperature and salinity profiles described by error functions:

T*(z*)5T
0
/DT2 erf(

ffiffiffiffi
p

p
z*)/2 and

S*(z*)5S
0
=DS2 erf(

ffiffiffiffi
p

p
rz*)=2

�
2
H

2
# z*#

H

2

�
, (17)

where r5hT /hS is the ratio of thermal to haline interfacial

thicknesses (r . 1), and H5H/hT is the dimensionless

domain height for a domain height H. These background

profiles delineate distinct regions of the fluid layer: a sta-

ble interface core, unstable boundary layers, and mixed

layers (Fig. 1).

We take the boundaries of the domain (z*56H/2) to be

rigid-lid, free slip and constant temperature and salinity

such that the following conditions apply on these bound-

aries: w*5 ›2w*/›z
2

*5 ›j*/›z*5T*5 S*5 0. Solutions are

assumed to take the form

fw*,T*, S*g5 �
n51

N

fŵ
n
, T̂

n
, Ŝ

n
g sin

�
np(z*1H/2)

H

�
3 exp(ik*x*1 il*y*1s*t*), (18)

j*5 �
n51

N

ĵ
n
cos

�
np(z*1H/2)

H

�
exp(ik*x*1 il*y*1s*t*),

(19)

where fŵn, T̂n, Ŝn, ĵng are nondimensional coefficients in

the series expansion of each vertical normal mode, k*
and l* are horizontal wavenumbers (nondimensionalized

by h21
T ), and s*5sr*1 isi* is the complex growth rate

(nondimensionalized by kT /h
2
T). We use a Fourier–Galerkin

method of solution, which can be constructed as follows (see

more details in Smyth and Carpenter 2019). Introduce the

function bn(z*)5 sin[np(z*1H/2)/H] and define the inte-

gral operator

hb
n
(z*)i5

2

H

ðH/2

2H/2

b
n
(z*) dz* . (20)

Using the identity hbn(z*)bm(z*)i5 (2/H)
Ð H/2

2H/2bn(z*)bm(z*)

dz*5 dnm, we substitute (18) and (19) into (13)–(16) and in-

tegrate over the vertical domain to yield

s*ĵn 52a2
nPrĵn 1

Pr

Ek
I

np

H
ŵ

n
, (21)

s*ŵn
52

Pr

Ek
I

np

Ha2
n

ĵ
n
2Pra2

nŵn
2Ra

I
Pr

K2

*
a2
n

(R
r
Ŝ
n
2 T̂

n
) ,

(22)

s*T̂n
52�

m51

N

ŵ
m

*
b
n
(z*)bm

(z*)
›T*
›z*

+
2a2

nT̂n
, (23)

s*Ŝn
52�

m51

N

ŵ
m

*
b
n
(z*)bm

(z*)
›S*
›z*

+
2 ta2

nŜn
. (24)

Here, we define K2

*5k2

*1 l2* and a2
n 5K2

*1 (np/H)2. These

four equations constitute an eigenvalue problem AX5s*X,
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for eigenvector X of length 4N created by concatenating the

Fourier coefficients fĵn, ŵn, T̂n, Ŝng. The A is a matrix of size

4N3 4N, and s* is the eigenvalue. The solutions vary withK*
and other dimensionless parameters including EkI, RaI, Rr, r,

and H. The complex growth rate s* and corresponding coef-

ficients fĵn, ŵn, T̂n, Ŝng of the most unstable mode may be

determined (given values of EkI, RaI, Rr, r, and H) by solving

the eigenvalue problem (we take N5 100). We take Pr5 6.25

and t 5 0.01, which we use later in the DNS for comparison

with Carpenter and Timmermans (2014).

b. Stability diagrams

The stability diagrams of Fig. 2 show positive unstable

growth rates, sr*, of the most unstable mode on the Rr–RaI
plane, for fixed values of r 5 2 and H 5 10. In addition, the

oscillation frequency si* of the fastest growing mode is also

shown (thick contours). Our choices for the ratio r of thermal

to haline interfacial thicknesses, and the dimensionless do-

main height H, are taken to be consistent with the observa-

tions and simulations of Sommer et al. (2013, 2014) and

Carpenter et al. (2012a). The stability diagrams for nonro-

tating (EkI 5 ‘) and rotating (EkI 5 0.1, 0.01) cases share

some general features: For any fixed Rr, the system is stable

at low RaI, then becomes oscillatory unstable (i.e., sr*. 0

and si* 6¼ 0) and finally convectively unstable (i.e., sr*. 0

and si*5 0) with increasing RaI. That the system is oscilla-

tory unstable at the stability boundary (sr*5 0) is consistent

with previous analyses that considered linear temperature

and salinity gradients (Stern 1960; Veronis 1965; Nield 1967;

Baines and Gill 1969; Pearlstein 1981). The stability diagrams

appear to be separated by Rr into two regions: for the non-

rotating case (Fig. 2a) for example, one region for Rr ,R*r
[with R*r 5 (Pr1 1)/(Pr1 t); see Veronis 1965; Carpenter

et al. 2012b] that is characterized by an oscillatory regime that

extends over a broader range of RaI, and the other for

Rr .R*r that has a narrower oscillatory regime and instability

at larger RaI. Carpenter et al. (2012b) showed that the two

regions have unstable modes with different vertical struc-

tures: the region of smaller Rr (i.e., Rr ,R*r in Fig. 2a) is char-

acterized by the interfacial unstablemodewhose perturbations are

the strongest at the center of the interface, while the region of

higher Rr (i.e., Rr .R*r in Fig. 2a) is characterized by the

boundary layer unstable mode whose perturbations are the

strongest at the gravitationally unstable boundary layers.

Instability within the smaller Rr region is the interfacial analog

of the instability of linear profiles (e.g., Stern 1960; Baines and

Gill 1969) acting within the interface center, and a convective-

type instability will only grow for sufficiently large RaI such

that viscosity and diffusion can be overcome; whereas the

larger Rr region is associated with gravitationally unstable

boundary layers and requires r . 1. It is this large Rr unstable

region that is relevant for Arctic Ocean diffusive convection,

since Arctic Ocean staircases typically have 2 , Rr , 10

(Shibley et al. 2017), and we expect this boundary layer un-

stable mode to trigger instability for staircases with and with-

out the effects of rotation. We therefore confine our attention

to the boundary layer modes throughout this paper.

With respect to the influence of rotation, it can be seen that

the value of RaI at the stability boundary is significantly larger,

and the growth rate at the same RaI is smaller, in the rotating

(Figs. 2b,c) versus the nonrotating (Fig. 2a) case. This suggests

that rotation inhibits the onset of diffusive convection and

stabilizes the system. Finally, it is of note that nonrotating and

rotating cases are indistinguishable for RaI . 106, indicating

that for large RaI, weak rotation does not affect the linear

stability properties of a staircase. Next, we examine how a

critical interfacial Rayleigh number (characterizing the onset

of instability) depends upon the strength of rotational effects,

characterized by the interfacial Ekman number.

c. Quantifying the effects of rotation

In quantifying the effects of rotation on diffusive–convective

fluxes, we seek a critical interfacial Rayleigh number, RacI , that

describes when the boundary layer first becomes unstable. This

is normally described by the condition that the growth rate

becomes positive, i.e., sr*. 0. However, due to our neglect of

the unsteady growth of the background temperature and sa-

linity profiles in time, we require that the growth rate of the

instability must sufficiently exceed that of the profiles, in order

for the assumption of a steady background to be valid (see e.g.,

FIG. 2. Positive growth rates of the most unstable mode on the Rr–RaI plane for H 5 10, r 5 2 and (a) EkI 5 ‘, the nonrotating case,

and rotating cases (b) EkI5 1021 and (c) EkI5 1022. Thin contours and color shading indicate the nondimensional linear growth rate sr*,

and thick contour lines indicate the nondimensional oscillatory frequency si*.
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discussion by Smyth and Carpenter 2019). We therefore

define a critical threshold by requiring that the perturbation

growth rate exceeds that of the profiles, determined by

Carpenter et al. (2012b) to be sr*5 2p for error function

profiles, with the understanding that this is an approximate

criterion. With this constraint, RacI is calculated over a range of

EkI for different combinations ofH,Rr, and r (Fig. 3). It can be

seen that the RacI–EkI relationship is similar among each group

of parameters: When the influence of rotation is sufficiently

small (EkI * 1), RacI remains independent of the rotation

strength (i.e., independent of EkI). In a rotationally controlled

regime (EkI & 0:1), there exists a distinct power law relation-

ship between RacI and EkI. For each set of parameters

considered, a least squares fit yields RacI }Ek24/3
I , in agreement

with previous LSA using linear background temperature and

salinity profiles (see Pearlstein 1981) and with the scaling for

single-component convection with linear background temper-

ature profiles (see Chandrasekhar 1953). That is, even for

profiles exhibiting an interface, the RacI–EkI relationship fol-

lows the 24/3 power law.

We note that for rotating thermal convection with linear

background temperature profiles, themost unstable normalmode

of each perturbation variable consists of only the fundamentaln5
1 Fourier component (i.e., the perturbation is strongest at the

center of the interface; see Chandrasekhar 2013). In the limit

EkI / 0, Chandrasekhar (2013) found analytically that the as-

ymptotic dependence of RacI on EkI yields the24/3 power law. In

the setting described here however, the most unstable normal

mode consists of more than one vertical Fourier component, and

the eigenvalue problem cannot be easily simplified. Still, the same

dependence of RacI on EkI is found, suggesting that the 24/3

power law may hold for a range of background density profiles

under the influence of rotation, and not just for linear profiles.We

can also compute the critical horizontal wavenumber Kc

* corre-

sponding to RacI ; this yields the scaling K
c

* }Ek21/3
I (not shown),

also in agreement with the scaling for thermal convection with

linear background temperature profiles (Chandrasekhar 1953).

We can calculate a value of EkI characterizing the transition

between nonrotating and rotationally controlled regimes by in-

tersecting the fit in the rotationally controlled regime with the

nonrotating value of RacI for each set of parameters. For our

considered range of parameters, which are representative of dif-

fusive convective staircases in the Arctic Ocean (Shibley et al.

2017), themean value of this transition interfacial Ekman number

is 0.0626 0.005, relatively insensitive to variations in r,Rr, andH

(Fig. 4). Recall that EkI 5 n/(2Vh2
T)5 d2E/h

2
T , where dE 5

ffiffiffiffiffiffiffiffiffiffi
n/2V

p
is the vertical scale of the frictional Ekman layer. Therefore, we

can relate the transition to a value of hT /dE, the ratio of thermal

interfacial thickness to Ekman layer thickness. This yields a

transition value of (hT /dE)
t ’ 4:0, which suggests that if the

thermal interfacial thickness exceeds about 4 times the Ekman

layer thickness, diffusive convection falls into the rotationally

controlled regime and diffusive–convective heat fluxes are ex-

pected to be inhibited.

FIG. 3. The critical interfacial Rayleigh number RacI (where

sr*5 2p, see text) as a function of the interfacial Ekman number

EkI for (a) r 5 2, Rr 5 5, and varying H; (b) r 5 2, H 5 10, and

varying Rr; (c) H 5 10, Rr 5 5, and varying r. In each case, the

instability is influenced by rotation in the region EkI & 0:1.

FIG. 4. The transition value of the interfacial Ekman number Ekt
I

(left axis) and the corresponding ratio of thermal interfacial

thickness to Ekman layer thickness (hT /dE)
t (right axis) between

the nonrotating and rotationally controlled regimes for the pa-

rameters labeled on the x axis. For each set of symbols (in each of

the three columns), the legends denote the corresponding param-

eter values. The black dashed line indicates the mean transition

values of Ekt
I and (hT /dE)

t .

NOVEMBER 2021 L IANG ET AL . 3339

Brought to you by HELMHOLTZ-ZENTRUM HEREON | Unauthenticated | Downloaded 03/02/22 12:56 PM UTC



Kelley (1987) analyzed heat flux measurements from the

rotating thermal convection experiments of Rossby (1969) in

the context of a Taylor number Ta5 4V2h4
T /n

2 5 (hT /dE)
4, a

measure of the relative importance of rotational and viscous

forces. By examining the heat flux–Ta relationship for a range

of Rayleigh numbers, Kelley deduced that convective heat

fluxes are strongly inhibited for Ta* 103. This is equivalent to

hT /dE . 5:6 (Carpenter and Timmermans 2014), close to the

transition value found here based on the LSA. The two tran-

sition values of hT /dE may be similar because Ekman and

thermal interfacial thicknesses are comparable between dif-

fusive convection and thermal convection, where they both

arise as boundary layers. A similar condition on the transition

to the rotationally controlled regime in thermal convection

was also proposed by King et al. (2012). As is shown in Fig. 4,

the effect of salinity on the transition value of hT /dE is nearly

negligible: (hT /dE)
t 5 4:06 0:2 for a range of r and Rr.

However, we note that the salinity stratification does affect

stability properties of the staircase, as RacI is larger for larger

Rr (Fig. 3b) and smaller r (Fig. 3c). We return to a comparison

of Kelley’s condition and our LSA-based condition for tran-

sition to rotationally controlled convection in section 3.

The LSA solutions can further provide physical insight into

how rotation inhibits convection, which we describe next.

d. Physical process of stabilization by rotation

To understand how rotation stabilizes diffusive convection,

it is useful to examine how vertical structures of the pertur-

bation velocity and vorticity are affected. As we will show in

the following analysis, the perturbation vertical velocity w* is

closely related to the perturbation horizontal vorticity. Given

j*5 ›y*/›x*2 ›u*/›y* and ›w*/›z*52(›u*/›x*1 ›y*/›y*),

based on solutions for j* and w* [(18) and (19)], we can solve

explicitly for u* and y*. For simplicity, we orient the horizontal

coordinate so that the wavenumber in the y direction l*5 0,

and k*5K*, which yields

u*5 i

�
1

K*

›w*
›z*

�
, (25)

y*5 i

�
2

1

K*
j*

�
. (26)

Using these relations, we can express the y component of the

horizontal vorticity qy*5 ›u*/›z*2 ›w*/›x*, in terms ofw* as

q
y*5

i

K*

�
›2w*
›z2

*
2K2

*w*

�
. (27)

The vertical structures of perturbation quantities w*, qy*,

and (RrS*2T*), for fixed values of RaI, Rr, H, and r, are

shown in Figs. 5a,c. The density perturbation (RrS*2T*) is

nondimensionalized by r0aDT and first appears in (14). The

mixed layer is in the upper part of the domain (only the top

half of the domain is shown), and we approximate the un-

stable boundary layer to be the region below this whose upper

and lower boundaries have vertical density gradients of 0.01

and 0, respectively (indicated by the gray bar in Fig. 5); the

stable interface core is below the unstable boundary layer.

The maximum magnitude of each nondimensional perturba-

tion variable is set to 3; phase relationships between pertur-

bation variables are not retained. The corresponding linear

growth rates sr* for rotating and nonrotating cases are 868

and 5322, respectively (i.e., rotation stabilizes the convec-

tion), and the corresponding horizontal wavenumbers K* for

rotating and nonrotating cases are 26.8 and 11.9, respectively

(i.e., rotation increases the horizontal wavenumber of the

most unstable mode).

In both rotating and nonrotating cases (Figs. 5a,c, respec-

tively) we find that the vertical velocity perturbation w* is

focused in the unstable boundary layer where the background

density gradient is negative, and extends only weakly into the

stable interface core and the mixed layer. This is in agreement

with previous studies which suggest that unstable boundary

layers trigger convection (e.g., Linden and Shirtcliffe 1978;

Carpenter et al. 2012b). The density perturbation (RrS*2T*)

is confined to the interface region (i.e., the unstable boundary

layer and the stable core) where the background density gra-

dient is nonzero. It changes sign across the unstable boundary

layer and the stable core, reflecting the change in sign of the

background density gradient.

The y component of the horizontal vorticity perturbation

qy* and w* share a similar vertical structure. This is because

K* � 1 and w* is mainly composed of small vertical wave-

numbers (i.e., n is small); the first term on the rhs of (27) is

negligibly small, and qy* is generally proportional to w*. It is

notable that qy* (and also w*) has a vertical extent in the

presence of rotation that is significantly larger than without

rotation. We can explore this by considering the governing

equation for qy*:

1

Pr

›q
y*

›t*
5=2

*qy*1
1

Ek
I

›y*
›z*

1Ra
I

›(R
r
S*2T*)

›x*
, (28)

where the LHS represents the growth of qy*, the first term on

the rhs represents diffusion by molecular viscosity, the second

term is a contribution from the tilting of planetary vorticity by

vertical shear of the horizontal flow, and the third term is the

baroclinic production term associated with the horizontal

density gradient. The vertical structure of each term, normal-

ized by the maximum amplitude of the baroclinic production

term, is shown Figs. 5b and 5d.

The growth of qy* follows the structure of qy* being the

largest in the unstable boundary layer. The largest term con-

tributing to the growth of qy* in the boundary layer is the baro-

clinic (buoyancy) production. Note that this term necessarily

drops to zero in the mixed layer where the buoyancy perturba-

tion is approximately zero (due to vanishing background density

gradients). It also undergoes a sign change between the unstable

boundary layer and the stable interface core. The viscous dif-

fusion term dampens the growth of qy*, which overall is a rela-

tivelyminor effect. The stabilizing role of rotation can be seen in

the boundary layer region of the rotating case (Fig. 5b) where

the tilting of planetary vorticity is largely responsible for coun-

teracting the baroclinic production that is solely responsible for

producing growth (in the nonrotating case, and in the boundary
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layer of the rotating case). It is interesting to note though that the

tilting term contributes to growth in the stable interface core and

the mixed layer, where it is largely counteracted by the baro-

clinic term and viscous term, respectively.

In summary, the growth of horizontal vorticity (qy*) is

largely confined to the unstable boundary layers through the

baroclinic production term. When rotation is included we see

the tilting of planetary vorticity providing a stabilization of this

mechanism in the unstable boundary layer. As the vertical

velocity perturbation (w*) is generally proportional to qy*,

vertical motion of convection is therefore inhibited in the

presence of rotation. Thus far, our LSA indicates rotation

suppresses diffusive–convective fluxes, and we have found a

transition to the rotationally controlled regime that is consis-

tent with the Kelley condition. Next, we test these predictions

using DNS.

3. Direct numerical simulations

In this section, we perform two-dimensional (2D) DNS as

well as a number of 3D DNS to explore the applicability of the

linear stability transition criterion to finite amplitude turbulent

convection. Beyond the transition, we expect the suppression

of convection by rotation to yield smaller diffusive–convective

FIG. 5. Background temperature, salinity, and density profiles (relative to the reference state) and vertical

structures of perturbation vertical velocity w*, horizontal vorticity qy*, and density RrS*2T* in the upper half of

the domain (z*5 0–4) for RaI 5 4 3 107, Rr 5 5, H 5 10, r 5 2 and (a) EkI 5 1024, (c) EkI 5 ‘. For illustration
purposes the maximum magnitudes of w*, qy* and RrS*2T* have been set to 3. (b),(d) The vertical structures of

each term in the horizontal vorticity budget for cases in (a) and (c), respectively. Terms have been normalized by

the maximum magnitude of the baroclinic production term RaI›(RrS*2T*)/›x*. The gray bar indicates the un-

stable boundary layer, whose lower and upper boundaries have vertical gradient of background density (non-

dimensionalized by r0aDT/H) equal to 0 and 0.01, respectively. Note that the planetary vorticity tilting term

[(1/EkI)(›y*/›z*)] vanishes in the absence of rotation in (d).

NOVEMBER 2021 L IANG ET AL . 3341

Brought to you by HELMHOLTZ-ZENTRUM HEREON | Unauthenticated | Downloaded 03/02/22 12:56 PM UTC



heat fluxes compared to the nonrotating case. Although

double-diffusive convection is three-dimensional, 2D experi-

ments have been shown to accurately simulate heat fluxes

compared to their 3D counterparts (Flanagan et al. 2013;

Hieronymus and Carpenter 2016). Our simulations solve the

Boussinesq momentum equations, continuity equation and

advection–diffusion equations assuming a linear equation of

state. For the 2D experiments, variations in the y direction are

set to 0. Periodic boundary conditions are applied at the side-

walls of the domain. Periodic boundary conditions are also

applied at the bottom and top boundaries, except with restor-

ing such that the mean temperature and salinity differences

across the domain do not change. The domain width to height

ratio is set to 2 for 2Dexperiments and 1 or 0.5 for 3Dexperiments

(we refer to this later); and the resolution is chosen such that the

grid size is smaller than or approximately equal to twice the

Batchelor scale given by LB 5 (nk2
S/�)

1/4
, where � is the volume

averaged kinetic energy dissipation rate (Carpenter et al. 2012a;

Carpenter and Timmermans 2014); this ensures that the molec-

ular diffusion of salt is properly simulated. For our simulations, we

use the DEDALUS package which utilizes a spectral numerical

method (Burns et al. 2020). Carpenter and Timmermans (2014)

used a different numerical code (seeWinters et al. 2004), and only

conducted 2D experiments.

To begin, we perform a set of 2D experiments using the

same parameters as the DNS experiments of Carpenter and

Timmermans (2014) for comparison with their results.

While for the LSA, we used interfacial Ekman and Rayleigh

numbers (i.e., that depended on the thermal interfacial

thickness), for the DNS we use Rayleigh and Ekman

numbers that depend on the domain height H: Ra5
gaDTH3/(kTn) and Ek5 n/(2VH2). This is because the

thermal interfacial thickness hT varies over the course of a

simulation. Following Carpenter and Timmermans (2014), we

choose Rr 5 (2, 5), Ra5 (6:53 105, 3:33 106, 1:63 107) and

Ek5 (‘, 13 1022, 13 1023, 23 1024, 13 1024). For Rr 5 5

and Ra5 (6:53 105, 3:33 106), extra experiments are con-

ducted for Ek 5 2.5 3 1023. For these experiments, we use a

11523 576 grid in the horizontal and vertical, respectively. We

conduct an additional set of experiments with Ra 5 1 3 108

and a broader range of Rr 5 (3, 5, 7). A resolution of 2880 3
1440 is used for theRr5 3 simulation and 20483 1024 forRr5
(5, 7). Note that in the Arctic Ocean, Ra’ 108–109, andH (i.e.,

typical thickness of a layer in a staircase) is O(1–5) m (Shibley

et al. 2017), so that Ek’ 1022– 43 1024, taking dE’ 10 cm for

laminar flows in the Arctic Ocean. Therefore, our simulations

may be at least generally representative of theArctic diffusive–

convective staircases.

Finally, we perform a number of complimentary 3D ex-

periments for Rr 5 5, Ra 5 6.5 3 105, and Ek5
(13 1022, 2:53 1023, 13 1023) with a resolutionof 1923 1923
192 and a domain width to height ratio of 1; as well as for Rr 5 5,

Ra 5 3.3 3 106, and Ek5 (2:53 1023, 13 1023, 23 1024)

with a resolution of 144 3 144 3 288 and a domain width to

height ratio of 0.5. Compared to the 2Dexperiments, the domain

width to height ratio for the 3D experiments is reduced signifi-

cantly due to limited computing resources, although we ensure

that at least one convective cell is resolved in the domain.

All experiments have Pr 5 6.25 and t 5 0.01 (as used in

the LSA). These values differ from those characterizing the

Arctic Ocean (13 and 0.005, respectively) for which the

simulations would be too computationally intensive for

large Ra (1 3 108). While the simulated heat fluxes will

differ from the Arctic setting, the choice of parameters will

not affect validation of the LSA results.

All numerical experiments are initialized with H5H/hT 5 11

and r5hT /hS 5 1, with the initial temperature and salinity pro-

files taking the form specified in (17). Random noise is added to

the temperature profile at the start of each simulation, which is

integrated until the simulated staircase reaches quasi-equilibrium

with respect to heat fluxes (we note that quasi-equilibriumwas not

attained for the three experiments with Ra 5 1 3 108 and Ek 5
13 1024, and refer to this later). Representative snapshots of the

density field for a nonrotating and rotating simulation are shown

in Fig. 6. The effect of rotation on the structure of double diffusive

convection is qualitatively clear in these examples: when rotation

is absent (Fig. 6a), there appears to be a single large convection

cell on either side of the diffusive core. Under the influence of

rotation (Fig. 6b), however, a number of distinct plumes are ob-

served rising and sinking from the interface. It is clear that the

most unstable mode has a larger horizontal wavenumber in the

presence of rotation.

Of primary importance is quantifying how rotation affects

diffusive convective heat fluxes FH, and estimates of heat fluxes

will allow us to test whether the nonrotating and rotating regimes

found in the LSA apply. Here we calculate heat fluxes across the

central isotherms of interfaces in the samemanner asWinters and

D’Asaro (1996) and Carpenter and Timmermans (2014). This

diascalar heat flux (in dimensional form) is estimated by

F
H
5
r
0
c
p

A

ð
s

k
T
=T � n ds , (29)

where cp is the specific heat capacity of water, n is the unit

vector normal to the central isotherm, ds is the length of in-

tegration along the central isotherm, and A is the horizontal

width of the simulated domain. The central isotherm temper-

ature is taken to be the average temperature of the entire

system. For the 3D experiments, FH is first calculated in each

vertical (x–z direction) plane and averaged along the y direc-

tion. Note that considering averages of convective heat fluxes

in the mixed layer returns values that only differ by about

1% from estimates inferred from (29) (see Carpenter and

Timmermans 2014), although the convective heat fluxes have

much larger temporal variation. Finally, it is useful to introduce

the Nusselt number (Nu) which is a measure of the diascalar

heat flux relative to the value for pure conduction:

Nu5
F
H

r
0
c
p
k
T

DT

H
, (30)

where DT is the temperature jump across the interface

(equivalent to the temperature difference between the top and

bottom of the domain).

Previous studies have suggested that when Rr * 2, the ther-

mal diffusive core is largely undisturbed and the fluid motion
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there is laminar, so the diascalar heat flux can be well approxi-

mated to be FH’r0cpkT›T/›zjs (Linden and Shirtcliffe 1978;

Carpenter et al. 2012a; Carpenter and Timmermans 2014).

Considering hT 5DT/(›T/›z)js yields Nu’H/hT . Therefore,

the transition to rotationally controlled heat fluxes stemming

from Kelley, hT /dE 5 5:6, is equivalently written as a transi-

tion Nusselt number of Nut
Kelley 5 0:18Ek21/2 (Carpenter and

Timmermans 2014). Similarly, based on our LSA analysis, the

transition occurs at Nut
LSA 5 0:25Ek21/2.

Average Nu versus Ek21/2 for all experiments are plotted in

Fig. 7; for comparison, the corresponding simulation results of

Carpenter and Timmermans (2014) are also shown (asterisks).

For the three experiments with Ra 5 1 3 108 and Ek 5 1 3
1024, values of Nu did not reach quasi-equilibrium and were

continuing to decrease at the end of the simulations. Open

circles are used to indicate the final values of Nu attained for

these experiments (Fig. 7), which represent only upper bound

values. Two transition lines, indicating the Kelley and LSA

transition conditions, are also plotted. The Nu remains largely

unchanged as Ek is decreased from the nonrotating case (on

the left side of the plot) toward Ek5 0.01 (i.e., Ek21/25 10), in

agreement with the LSA that weak rotation does not change

the stability properties of the diffusive boundary layer. When

Ek is reduced further (i.e., enhanced rotation), the results ap-

proach the two transition lines. Near this point, there is a rel-

atively sharp increase in Nu, which has been suggested to be

caused by nonlinear Ekman transport in the thermal boundary

layer forced by cyclonic circulation of convective plumes (e.g.,

Rossby 1969; Julien et al. 1996; King et al. 2012). After the

transition lines are crossed, further reducing Ek completely

shuts down convection, until heat transport is only pure con-

duction (Nu 5 1).

To the left of the transition, the simulated Nu agrees rea-

sonably well between 2D and 3D experiments (Fig. 7). The 3D-

simulated Nu is generally larger than the 2D value, in part due

to the reduced width to height ratio of the 3D domain. For the

parameters of the simulation, we find that reducing the 2D

domain width to height ratio by a factor of 1/2 or 1/4 yields an

increase in Nu by ;10%. After accounting for this effect, we

find the 3D Nu to be ;10% larger than the 2D values, which

may result from better resolving the convective cells. Closer to

the transition, the simulated Nu is found to differ between the

2D and 3D experiments; after convection has completely shut

down (Nu 5 1) in the 2D experiments, convection remains

active in the 3D experiments (Nu. 1). This may be due to the

fact that the 3D-simulated Nu is generally larger than the 2D

values (i.e., stronger convection) for the reasons noted above.

Further reducing Ek yields Nu 5 1 for both the 2D and 3D

experiments.

We find the overall Nu–Ek21/2 relationship resembles the

study of Carpenter and Timmermans (2014), which is now

examined in a larger parameter space. Note the simulated Nu

FIG. 6. Representative snapshots of the DNS density field for experiments withRr 5 3, Ra5
1 3 108 and (a) Ek 5 ‘, (b) Ek 5 1 3 1023. A more organized convection is notable in the

presence of rotation in (b).
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for Rr 5 5, Ra 5 3.3 3 106, and Ek 5 1 3 1023 in this study is

different from that of Carpenter and Timmermans (2014). This

result is close to the transition lines and may be sensitive to

initial random noise and numerical methods. We find that the

LSA-based condition gives a good estimation of the transition

to a rotationally controlled regime, except when Rr 5 7 and

Ra 5 1 3 108. For this pair of parameters, Nu continues to

increase after the LSA condition is crossed and does not de-

crease until the Kelley condition is crossed. This may be partly

due to the fact that larger Rr and smaller H correspond to

somewhat larger (hT /dE)
t for the LSA-based condition (cf.

Fig. 4), bringing it closer to the Kelley condition. For the other

experiments, Nu immediately decreases after the LSA-based

condition is crossed. The good agreement between the LSA-

based transition criterion and DNS results suggests that the

LSA captures the essential features of the stabilization of dif-

fusive convection by rotation.

4. Summary and discussion

We have investigated how the linear stability properties, and

heat fluxes, of a diffusive–convective staircase are affected by

planetary rotation. Via LSA we have shown that rotation sta-

bilizes convection by increasing the critical interfacial Rayleigh

number, RacI , for its onset and reducing the growth rate of the

most unstable mode. A 24/3 power law, RacI }Ek24/3
I , is found

when rotation strongly influences the flow for a range of values

of H, Rr, and r. A transition from nonrotating to rotating dif-

fusive convection is shown to occur for hT /dE ’ 4:0 (i.e., rotation

is important when the thermal interfacial thickness is more than

about 4 times the frictional Ekman layer thickness). This tran-

sition value is close to the Kelley condition, hT /dE 5 5:6, which

was originally formulated based on heat flux measurements of

rotating (single-component) thermal convection experiments

(Rossby 1969; Kelley 1987; Carpenter and Timmermans 2014).

We suggest these two transition criteria are similar because for

both thermal and diffusive convection, it is the unstable thermal

boundary layer that triggers convection; the rotational effect is

well quantified by comparing the Ekman and thermal interfacial

thicknesses, as suggested by King et al. (2012). We find that the

LSA results indicate the stabilizing effect of salinity has nearly

negligible effect on the value of (hT /dE)
t (Fig. 4).

Despite the generally good agreement between the Kelley

and LSA transition criteria, there is no reason to expect they

should be equal given the approximations and assumptions

that have been made. For the LSA-based condition, we de-

scribe the background temperature and salinity profiles us-

ing error functions, which are an idealization of the actual

structure of diffusive–convective interfaces. This is impor-

tant because the stability boundary has been shown to be

sensitive to the exact form of background density stratifica-

tion (Carpenter et al. 2012b). Further, RacI is taken to be

when sr* exceeds 2p. While this is only an approximate

criterion; for the LSA to be valid, sr* should significantly

exceed 2p if neglecting the time evolution of the background

profiles by diffusion (Smyth and Carpenter 2019). Different

thresholds of sr* will lead to different values of hT /dE for the

transition to the rotationally controlled regime. Finally,

(hT /dE)
t is determined by intersecting the fit of RacI(EkI) in

the rotationally controlled regime with the nonrotating value

of RacI , when in fact the transition is a gradual and broad

region of EkI (Fig. 3). In sum, both the Kelley and LSA-

based criteria should be regarded as approximate, with some

empirical refinement likely needed.

We have then investigated the physical mechanisms for the

suppression of diffusive convection by rotation through an

examination of the horizontal vorticity budget. In the ab-

sence of rotation, the horizontal density gradient effectively

generates horizontal vorticity and drives vertical motion in

the unstable boundary layer. In the presence of strong ro-

tation, however, the tilting of planetary vorticity by vertical

shear of the horizontal velocity strongly counteracts baro-

clinic production. As a result, the vertical motion of con-

vection is strongly inhibited. Previous studies have usually

referred to the Taylor–Proudman theorem as the mechanism

for the stabilizing effects of rotation (Chandrasekhar 1953,

2013; Niiler and Bisshopp 1965). The current analysis, how-

ever, offers a new perspective in understanding the effect of

rotation.

To validate our LSA-based transition criterion, we have

conducted a series of 2D DNS experiments as well as a

number of complimentary 3D experiments using a range of

parameters consistent with past experiments and broadly

applicable to diffusive–convective staircases in the Arctic

FIG. 7. The relationship between DNS quasi-equilibrium Nu

with Ek21/2 for all simulations. The asterisks denote the quasi-

equilibrium values of Nu from the 2D simulations of Carpenter and

Timmermans (2014); circles denote results from 2D, and diamonds

denote results from 3D simulations in the present study. Note a

different numerical code was used by Carpenter and Timmermans

(2014), see text. The solid circles indicate that 2D experiments have

reached quasi-equilibrium while open circles indicate otherwise

(i.e., they are only upper-bound values on quasi-equilibrium Nu).

The black solid line and dashed line indicate the transition to a

rotationally controlled regime predicted by the Kelley condition

and our LSA-based condition, respectively. Note the rapid drop of

Nu (suppression of heat fluxes) when the LSA-based transition line

is crossed into the rotational regime on the right side of the plot

except for the case Rr 5 7, Ra 5 1 3 108 (see text).
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Ocean. For sufficiently large Ek (Ek* 1022), the nondi-

mensional heat flux Nu is found to be largely unchanged

compared to the nonrotating case. The Nu is generally found

to decrease sharply after the LSA-based and Kelley con-

ditions are crossed into the strongly rotating regime. We

conclude that the LSA captures the essential features of

the stabilization of diffusive convection by planetary ro-

tation, and provides a theoretical framework for the tran-

sition. For staircases in the Arctic Ocean’s Canadian Basin,

thermal interfacial thicknesses are typically thinner than

a few times the Ekman layer thickness, and planetary ro-

tation should not influence heat fluxes (Carpenter and

Timmermans 2014). On the other hand, staircases in the

Eurasian Basin can have thermal interfacial thicknesses

around 1 m (Shibley et al. 2017) and rotation may inhibit

heat fluxes in these interfaces; see the discussion by

Carpenter and Timmermans (2014).

Although we have used parameters in the LSA and DNS

that resemble those of the Arctic Ocean’s diffusive–convective

staircases, the analysis method and revealed physical processes

may be generalized to other diffusive–convective settings. The

LSA can serve as an important tool to understand the effects of

rotation on diffusive convection, which is especially useful for

those systems characterized by large Rayleigh numbers, as it

will require exceptional computing resources to conduct direct

numerical simulations.
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