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Abstract

A modified global Schmid factor under different stress states was developed by
introducing the stress intensity to normalize the stress tensor. The new method
offers an efficient way to compare the activation of one deformation mode under
different stress states. The distributions of global Schmid factors for deforma-
tion modes in Mg alloys were also studied using this new method. The results
indicated that stress state dominated the distributions of global Schmid factors
for different deformation modes in a similar way. Additionally, the deformation
compatibilities among deformation modes were also influenced by the stress state,
especially under a biaxial stress state.



Schmid law states that a slip system can be activated if the resolved shear
stress applied to the material is higher than the critical resolved shear stress of
this slip system [1]. With the highest Schmid factor (SF), the slip or twinning
system has the greatest possibility to be activated [2-4]. Hence, SF is widely used
to evaluate the activation of deformation modes, especially for Mg alloys under a
uniaxial stress state [5-7]. The resolved shear stress (7) can be expressed as [8]:
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where F is the loading force applied to the material, A is the section area of the
material, A (¢) is the angle between F and the slip (or twinning) direction (normal
direction of the plane, ND). The cos\ - cos¢ is known as the Schmid factor.

However, Eq. (1) only gives a method to calculate the resolved shear stress or
SF under uniaxial stress state, which has a clear load direction.

When the stress state is not uniaxial, such as biaxial or triaxial, it is difficult
to calculate the SF using Eq. (1) directly. Hence, methods were developed to
solve this problem [9-14]. For instance, during rolling, the SF was taken as the
average of SF for tension along the rolling direction (RD) and SF for compres-
sion along ND, plus or minus depending on whether the c-axis was extended or
compressed [9,10,14]. However, this method could not be used under other stress
states. Jin et al. [11] showed the direction of the largest one among three principal
stresses was taken as the load direction to calculate SF during three-point bend-
ing. The influence of the other two principal stresses on SF was ignored. This
method could only be used for qualitative analysis. Chen et al. [15] introduced
an effective Schmid factor (ESF) based on the ratio of the external work to the
internal work of particular deformation mode. During the calculation of ESF, the
Schmid factor was treated as a tensor. Since it is difficult to compare two tensors,
ESF was defined as the ratio of resolved shear stress to the effective stress. This
ratio could be calculated based on the ratio of the unit external work to the inter-
nal work. Recently, a global Schmid factor (GSF) was introduced to describe the
activation of deformation modes during rolling or under plane strain state [12,13].
The difference between SF and GSF is that a stress tensor is used as the load on
the deformation modes during the calculation of GSF. Set b = (bx, by, bz) as the
normalized slip or shearing direction and n = (n,, n,, n.) as normalized ND of the
slip or shearing plane. The stress tensor o is usually simplified as shown by Eq.
(2) in the principle stress space where o1, 09, 03 are three principle stresses. Thus,
GSF can be calculated as b” - o - n or specified as Eq. (3):
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GSF = byoi1ng + byoon, + b.osn, 3)

For slip systems, the final GSF is an absolute value.

The introduction of the stress tensor gives GSF a much broader scope of ap-
plication under different stress states. However, the GSF is still imperfect. When
the stress state is uniaxial, the unique non-zero principle stress can always be sim-
plified as one (e.g. o1 = 1 and 05 = 03 = 0). It infers that for the same deformation
mode, the same SF value means the same possibility to be activated, because the
loads along different directions are normalized to be "1". In this case, GSF is
equivalent to SF with the same range (-0.5- 0.5). However, when the stress state
is biaxial or triaxial, there are more than one non-zero principle stresses. Accord-
ing to Eq. (3), the value and the range of GSF will change with different ratios
among the non-zero principle stresses. Besides, the stress tensor with one specific
ratio (e.g. o1 = 1, 09 = 1, 03 = 0.5) may be not equivalent to another stress tensor
with a different ratio (e.g. 01 = 0.5, 09 = 0.8, 03 = 1). It means that for the same
deformation modes and the same GSF value may mean that different possibilities
could be activated since the loads are not the same scale.

According to von Mises criterion, when the load is over the stress intensity
(also known as the equivalent von Mises stress), the material will yield, no matter
how diverse the ratios are among the principle stresses [16]. If different stress
tensors have the same stress intensity, they are equivalent for the material to yield
[17]. Hence, to improve the calculation method of GSF, a stress intensity to nor-
malize the stress tensor is introduced. Eq. (4) and Eq. (5) show the calculation of
stress intensity o using the general stress tensor with shear stress components or
simplified stress tensor in the principle stress space. The modified GSF is calcu-
lated as Eq. (6).
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Hence, the modified GSF can be used under any kinds of stress states, even
though the shear stress components are non-zero or the simplification of stress
tensor is not available. It should be noted that the stress intensity ¢ based on
the von Mises yield criterion is not the same concept with the "effective stress"
introduced in Chen et al. [15]. Here we just use the symbol ¢ to be in line
with the classical plastic theory. To verify this new method, we investigated the
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Figure 1: Influence of stress state on the distribution of GSF for basal slip as a
function of {0001} PF. The scale is (0-0.58).
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Figure 2: Influence of stress state on the distribution of GSF for prismatic slip as a
function of {0001} PF. The scale is (0-0.58).
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Figure 3: Influence of stress state on the distribution of SF for TT as a function of
{0001} PFE. The scale is (-0.58-0.58).



Table 1: The ranges of GSFs for basal «a» slip under different stress
states. The ratio of X is set as 1.

Y -1 -0.5 0 0.5 1

-1 (0-0.50) (0-0.51) (0-0.50) (0-0.51) (0-0.50)
-0.5 (0-0.55)  (0-0.50)  (0-0.50) (0-0.50) (0-0.50)
0 (0-0.58) (0-0.57) (0-0.50) (0-0.50) (0-0.50)
0.5 (0-0.55) (0-0.57) (0-0.58) (0-0.50) (0-0.50)
1 (0-0.50)  (0-0.50)  (0-0.50) (0-0.50) (0-0)

influence of stress states on GSFs for basal «a», prismatic «a» slip systems and
tensile twinning (TT) in Mg alloys. During the calculation, we set X-axis, Y-axis
and Z-axis along RD, transverse direction (TD) and ND of sample coordination.
To simplify the calculations, we set 07y = 1 (X =1) and 05 (Y), 03 (Z) in a range of
(-1-1). Furthermore, the third Euler angle was set to be zero since its influence on
the distribution of SF is not significant [18]. The adopted GSF value is the highest
value for all the variants of the corresponding mode. The results are shown in
Figs. 1-3.

Figs. 1-3 indicate that the stress state dominates the distribution of GSFs for
these three deformation modes in a similar way. Firstly, all distribution of GSFs
changes gradually from axisymmetric to circularly symmetric with the Y ratio
changing from -1 to 1. Besides, the four corners of Figs. 1-3 represent four kinds
of distributions of high GSFs in the pole figures (PFs), which are determined by
the stress state. Close to upper left or right corner, the distribution of high GSFs
tends to be parallel to TD or RD. The lower left corner means a circular symmetric
distribution. The GSF distribution at the lower right corner will be discussed later.
Hence, according to the distribution of GSFs, Mg alloys with different textural
orientations will show different deformability under different stress states [19-
21]. The symmetries of the GSF distributions in the inner PFs are a little different
according to different modes. The special distributions of GSF at the centers of
some PFs are mainly attributed to the sensitivity of trigonometric functions to
the change of Euler angles in this region, especially as shown in Fig. 2 or Fig.
3. In addition, the Z ratio affects the values of GSFs but has no influence on
the symmetry of the GSF distribution when X: Z = 1:1. A similar phenomenon
is found when X:Z = 1:1, but the changing ratio of Y has no influence on the
symmetry of GSF distribution as well. This kind of similarity comes from the
symmetry of stress states. The distribution of GSFs can be exported under other
kinds of stress states based on this stress state symmetry as well.

Secondly, with different stress ratios, the range of GSF will change also. As
an example, Table 1 shows the different ranges of GSFs for basal «a» slip under



different stress states. From the results presented, the highest GSF for basal «a»
slip is with stress ratios of X: Y:Z = 1:0:-1 or X:Y:Z = 1:0.5:0. However, the
ESF value for basal slip reported by Chen et al. can be about 0.8 under the stress
state with 015 and w = £10 [15]. To investigate this difference, the elastic work
involved by Chen et al. can be calculated using Eq. (7) in the principle stress
space:

1
Uew = ﬁ[af+0§+ag —2V(0102+02U3+0301)] (7)

The elastic work consists of two components: the volumetric work and the
distortional work. The volumetric work is calculated as:

1—-2v
W, = 6T(01+U2+U3)2 ()
The distortional work is calculated as:
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Wd_Uex_Wu_ BEU (9)

Here o is the stress intensity. Hence, the physical interpretation of von Mises
yield criterion offered by Hencky et al. suggested that yielding began when the
distortion work reached a critical value [22]. Since Poisson’s ratio and the elastic
modulus are constants to materials, this interpretation is equivalent to the interpre-
tation based on the stress intensity mentioned above. It means that the difference
between ESF and the modified GSF mainly comes from the consideration of the
volumetric work and the range change caused by the parameters. Hence, GSF
normalized by the stress intensity is a better choice than ESF when the influence
of the volumetric work is ignored and vice versa. Additionally, when the stress
ratio is X:Y:Z = 1:1:1 (at the lower right corner mentioned above), the GSF for
any mode with any orientation is always zero. This means that no deformation
modes can be activated under equal tri-axial stress state. The main reason is that
the total stress is along ND of the slip or twinning plane under equal triaxial stress
state, which leads to no shear stress in the plane. Hence, materials are always
brittle under equal triaxial tensile stress state and always ductile under equal tri-
axial compressive stress state [23]. There should also be a gradual change of
GSF range when the stress state is close to X:Y:Z = 1:1:1. However, since we
have normalized the stress tensor by stress intensity, this transition is neutralized.
Hence, during processing based on slips or twinning, the appearance of equal or
quasi-equal triaxial stress state in Mg alloys should be avoided.

Finally, the special distribution of GSFs also affects the compatibility between
slips and TT. For example, a grain in Mg alloys with c-axis parallel to RD can
deform by TT, and the c-axis in the TT variant is parallel to ND under a biaxial



tensile stress state [24]. According to Figs. 1-3, the high GSF for prismatic «a»
slip will decrease from approximately 0.5 to O in the TT variant, which means
the appearance of tensile twins will give a limit to the activation of prismatic «a»
slip. This kind of incompatibility is easier to happen for Mg alloys under the
stress states that can lead to a circular symmetry distributed GSF for deformation
modes, such as the biaxial stress state. That is also partially the reason for the
lack of easy deformation modes to accommodate plastic strain in Mg alloy rolled
sheets with strong basal texture during formation [25-28]. Hence, in order to
improve the formability of Mg alloys, the influence of the stress state should also
be considered.

In summary, by normalizing the stress tensor and modifying the calculation
method, the new GSF can be used to compare the possibilities of the same de-
formation mode under different stress states. Using this method, the distribution
of GSFs for basal, prismatic slip and TT in magnesium alloys was proved to be
dominated by the stress state. In addition, all the deformation modes would be
limited if the stress state was equal or quasi-equal triaxial. The compatibility be-
tween slips and twinning was dominated by stress state as well. Based on these
conclusions, Mg alloys with proper orientations can be chosen to obtain differ-
ent deformability or identify the activation of deformation modes under different
stress states.
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